Skip to main content
Log in

Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

We investigated the effect of exogenous abscisic acid (ABA) application on the transcriptome as well as the phenolic profiles in the skins of Vitis vinifera cv. Cabernet Sauvignon grape berries grown on the vine and cultured in vitro. ABA application rapidly induced the accumulation of anthocyanin and flavonol. Correlatively, the structural genes in the phenylpropanoid and flavonoid pathways, their transcriptional regulators, as well as genes considered to be involved in the acylation and transport of anthocyanin into the vacuole, were upregulated by ABA treatment. The Genechip analysis showed that the ABA treatment significantly up- or downregulated a total of 345 and 1,482 transcripts in the skins of berries grown on the vine and cultured in vitro, respectively. Exogenous ABA modulated the transcripts associated with osmotic responses, stress responses, cell wall modification, auxin and ethylene metabolism and responses, in addition to the induction of anthocyanin biosynthetic genes, and reduced those associated with photosynthesis; approximately half of these transcripts were identical to the previously reported ripening-specific genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akuri S, Büttner M (2007) Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proc Natl Acad Sci USA 104:2537–2542

    Article  CAS  Google Scholar 

  • Barnavon L, Doco T, Terrier N, Ageorges A, Romieu C, Pellerin P (2001) Involvement of pectin methyl-esterase during the ripening of grape berries: partial cDNA isolation, transcript expression and changes in the degree of methyl-esterification of cell wall pectins. Phytochemistry 58:693–701

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc, B 57:289–300

    Google Scholar 

  • Bogs J, Jaffe FW, Takos AM, Walker AR, Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt MM, Klein PE, Mullet JE (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720

    Article  PubMed  CAS  Google Scholar 

  • Çakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15:2165–2180

    Article  PubMed  CAS  Google Scholar 

  • Chervin C, El-Kereamy A, Roustan JP, Latche A, Lamon J, Bouzayen M (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 167:1301–1305

    Article  CAS  Google Scholar 

  • Chervin C, Tira-umphon A, Terrier N, Zouine M, Severac D, Roustan JP (2008) Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Physiol Plant 134:534–546

    Article  PubMed  CAS  Google Scholar 

  • Con S, Curtin C, Bezier A, Franco C, Zhang W (2008) Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot 59:3621–3634

    Article  CAS  Google Scholar 

  • Coombe BG (1976) The development of fleshy fruits. Annu Rev Plant Physiol 27:507–528

    Article  Google Scholar 

  • Coombe BG, Hale CR (1973) The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiol 51:629–634

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR, Ergul A, Grimplet J, Tillet RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:317–333

    Article  PubMed  CAS  Google Scholar 

  • Davies C, Robinson SP (2000) Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. Plant Physiol 122:803–812

    Article  PubMed  CAS  Google Scholar 

  • Davies KM, Schwinn KE (2003) Transcriptional regulation of secondary metabolism. Funct Plant Biol 30:913–925

    Article  CAS  Google Scholar 

  • Deluc LG, Grimplet J, Wheatley MD, Tillett R, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429

    Article  PubMed  Google Scholar 

  • Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Merillon JM, Cushman JC, Cramer GR (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10:212

    Article  PubMed  CAS  Google Scholar 

  • Deytieux-Belleau C, Vallet A, Doneche B, Geny L (2008) Pectin methylesterase and polygalacturonase in the developing grape skin. Plant Physiol Biochem 46:638–646

    Article  PubMed  CAS  Google Scholar 

  • Downey MO, Harvey JS, Robinson SP (2004) The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust J Grape Wine Res 10:55–73

    CAS  Google Scholar 

  • Düring H, Alleweldt G, Koch R (1978) Studies on hormonal control of ripening in berries of grape vines. Acta Hortic 80:397–405

    Google Scholar 

  • Elomaa P, Uimari A, Mehto M, Albert VA, Laitinen RAE, Teeri TH (2003) Activation of anthocyanin biosynthesis in Gerbera hybrida (Asteraceae) suggests conserved protein-protein and protein-promoter interactions between the anciently diverged monocots and eudicots. Plant Physiol 133:1831–1842

    Article  PubMed  CAS  Google Scholar 

  • Geny L, Deytieux C, Donèche B (2004) Importance of hormonal profile on the onset of ripening in grape berries of Vitis vinifera L. Acta Hortic 682:99–105

    Google Scholar 

  • Giribaldi M, Hartung W, Schubert A (2009) The effects of abscisic acid on grape berry ripening are affected by the timing of treatment. J Int Sci Vigne Vin 43:1–7

    Google Scholar 

  • Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC (2007) Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics 8:187

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka S, Onodera H, Kawai Y, Kubo T, Itoh H, Wada R (2001) ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro. Sci Hortic 90:121–130

    Article  CAS  Google Scholar 

  • Huang D, Jaradat MR, Wu W, Ambrose SJ, Ross AR, Abrams SR, Cutler AJ (2007) Structural analogs of ABA reveal novel features of ABA perception and signaling in Arabidopsis. Plant J 50:414–428

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    Article  PubMed  CAS  Google Scholar 

  • Ikegami A, Eguchi S, Kitajima A, Inoue K, Yonemori K (2007) Identification of genes involved in proanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit. Plant Sci 172:1037–1047

    Article  CAS  Google Scholar 

  • Inaba A, Ishida M, Sobajima Y (1974) Regulation of ripening in grapevines by hormone treatments (agriculture). Sci Rep Kyoto Pref Univ Agr 26:25–31

    CAS  Google Scholar 

  • Inaba A, Ishida M, Sobajima Y (1976) Changes in endogenous hormone concentrations during berry development in relation to the ripening of Delaware grapes. J Japan Soc Hort Sci 45:245–252

    Article  Google Scholar 

  • Jackson RS (2000) Vineyard practice. In: Taylor S (ed) Wine science. Academic, San Diego, pp 109–111

    Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P, French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167:247–252

    Article  CAS  Google Scholar 

  • Kataoka T, Kusunoki R, Inoue H (1992) Effects of abscisic acid on anthocyanin accumulation and sugar content in berry skin of grapes. Hortic Res (Japan) 61S1:84–85

    Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Koshita Y, Takahara T, Ogata T, Goto A (1999) Involvement of endogenous plant hormones (IAA, ABA, Gas) in leaves and flower bud formation of Satsuma mandarin (Citrus unshiu Marc.). Sci Hortic 79:185–194

    Article  CAS  Google Scholar 

  • Koyama K, Goto-Yamamoto N, Hashizume K (2007) Influence of maceration temperature in red wine vinification on extraction of phenolics from berry skins and seeds of grape (Vitis vinifera). Biosci Biotechnol Biochem 71:958–965

    Article  PubMed  CAS  Google Scholar 

  • Koyama K, Goto-Yamamoto N (2008) Bunch shading during different developmental stages affects the phenolic biosynthesis in berry skins of ‘Cabernet Sauvignon’ grapes. J Amer Soc Hort Sci 133:743–753

    Google Scholar 

  • Lund ST, Peng FY, Nayar T, Reid KE, Schlosser J (2008) Gene expression analysis in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within cluster. Plant Mol Biol 68:301–315

    Article  PubMed  CAS  Google Scholar 

  • Mané C, Souquet JM, Ollé D, Verriés C, Véran F, Mazerolles G, Cheynier V, Fulcrand H (2007) Optimization of simultaneous flavonol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: Application to the characterization of champagne grape varieties. J Agric Food Chem 55:7224–7233

    Article  PubMed  CAS  Google Scholar 

  • Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M (2007) The Arabidopsis MATE.transporter TT12 acts as a vacuolar flavonoid/H+ antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19:2023–2038

    Article  PubMed  CAS  Google Scholar 

  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135–1149

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Saito H, Goto-Yamamoto N, Kitayama M, Kobayashi S, Sugaya S, Gemma H, Hashizume K (2005) Effect of abscisic acid treatment and night temperatures on anthocyanin composition in Pinot noir grapes. Vitis 44:161–165

    CAS  Google Scholar 

  • Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red wine grape under high temperature. J Exp Bot 58:1935–1945

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Todoriki S, Masumizu T, Suda I, Furuta S, Du Z, Kikuchi S (2003) Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. J Agric Food Chem 51:2992–2999

    Article  PubMed  CAS  Google Scholar 

  • Nunan KJ, Davies C, Robinson SP, Fincher GB (2001) Expression patterns of cell wall-modifying enzymes during grape berry development. Planta 214:257–264

    Article  PubMed  CAS  Google Scholar 

  • Okamoto G, Kuwamura T, Hirano K (2004) Effects of water-deficit stress on leaf and berry ripening in Chardonnay grapevines (Vitis vinifera). Vitis 43:15–17

    CAS  Google Scholar 

  • Ortega-Regules A, Ros-Garcia JM, Bautista-Ortin AB, Lopez-Roca JM, Gomez-Plaza E (2008) Changes in skin cell wall composition during maturation of four premium wine grape varieties. J Sci Food Agric 88:420–428

    Article  CAS  Google Scholar 

  • Peppi MC, Fidelibus MW, Dokoozlian NK (2007) Application timing and concentration of abscisic acid affect the quality of ‘Redglobe’ grapes. J Hortic Sci Biotechnol 82:304–310

    CAS  Google Scholar 

  • Peppi MC, Walker MA, Fidelbus MW (2008) Application of abscisic acid rapidly upregulated UFGT gene expression and improved color of grape berries. Vitis 47:11–14

    CAS  Google Scholar 

  • Peumans WJ, Barre A, Derycke V, Rouge P, Zhang W, May GD, Delcour JA, Van Leuven F, Van Damme EJM (2000) Purification, characterization and structural analysis of an abundant beta-1, 3-glucanase from banana fruit. Eur J Biochem 267:1188–1195

    Article  PubMed  CAS  Google Scholar 

  • Pilati S, Perazzolli M, Malossini A, Cestaro A, Dematte L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C (2007) Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. BMC Genomics 8:428

    Article  PubMed  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitering expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27

    Article  PubMed  CAS  Google Scholar 

  • Robinson SP, Jacobs AK, Dry IB (1997) A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol 114:771–778

    Article  PubMed  CAS  Google Scholar 

  • Sarry JE, Sommerer N, Sauvage FX, Bergoin A, Rossignol M, Albagnac G, Romieu C (2004) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Proteomics 4:201–215

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression pattern of around 7, 000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2005) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637–646

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  PubMed  CAS  Google Scholar 

  • Tattersall DB, Van-Heewijck R, Hoj PB (1997) Identification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjugation with the onset of sugar accumulation and berry softening in grapes. Plant Physiol 114:759–769

    Article  PubMed  CAS  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852

    Article  PubMed  CAS  Google Scholar 

  • Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Leon C, Renaudin JP, Dedaldechamp F, Romieu C, Derlot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832–847

    Article  PubMed  CAS  Google Scholar 

  • Tesniere C, Pradal M, El-Kereamy A, Torregrosa L, Chatelet P, Roustan JP, Chervin C (2004) Involvement of ethylene signaling in a non-climacteric fruit: New elements regarding the regulation of ADH expression in grapevine. J Exp Bot 55:2235–2240

    Article  PubMed  CAS  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Lliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 12:e1326

    Article  CAS  Google Scholar 

  • Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    Article  PubMed  CAS  Google Scholar 

  • Wan XR, Li L (2006) Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochem Biophys Res Commun 347:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Waters DLE, Holton TA, Ablett EM, Lee LS, Henry RJ (2005) cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct Integr Genomics 5:40–58

    Article  PubMed  CAS  Google Scholar 

  • Wheeler S, Loveys B, Ford C, Davies C (2009) The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust J Grape Wine Res. doi:10.1111/j.1755-0238.2008.00045.x

  • Xiao H, Nasuth A (2006) Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep 25:968–977

    Article  PubMed  CAS  Google Scholar 

  • Yakushiji H, Morinaga K, Kobayashi S (2001) Promotion of berry ripening by 2, 3, 5 - triiodobenzoic acid in ‘Kyoho’ grapes. J Japan Soc Hort Sci 70:185–190

    Article  CAS  Google Scholar 

  • Zhao J, Dixon RA (2009) MATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell (in press)

Download references

Acknowledgements

The authors would like to thank Dr. Yasuo Kamuro (BAL Planning Co., Ltd, Ichinomiya, Aichi, Japan) for providing the purified (+)-ABA used in this study and Dr. Grant R. Cramer (University of Nevada, Reno, NV, USA) for kindly providing the annotation list of the Affymetrix V. vinifera Genechip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Koyama.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Table S1

Effect of ABA treatment on berry weight and composition of Cabernet Sauvignon grape berries grown on the vine (DOC 35 kb)

Supplementary Table S2

Effect of ABA treatment on berry weight and composition of Cabernet Sauvignon grape berries cultured in vitro (DOC 29 kb)

Supplementary Table S3

Effect of ABA treatment on the phenolic concentration and composition in the skins of Cabernet Sauvignon grape berries cultured in vitro (DOC 41 kb)

Supplementary Table S4

Chemical composition of wine vinificated from ABA-treated grapes (DOC 28 kb)

Supplementary Table S5

Expression profile of the genes that show significant change at least at one stage after ABA treatment in the skins of Cabernet Sauvignon grape berries grown on the vine (DOC 646 kb)

Supplementary Table S6

Expression profile of the genes that show significant change at least at one stage after ABA treatment in the skins of Cabernet Sauvignon grape berries cultured in vitro (DOC 2020 kb)

Supplementary Fig. S1

Box-Whisker plot of probe intensity values of all 20 oligonucleotide microarrays after MAS5.0 pre-processing and normalization (DOC 103 kb)

Supplementary Fig. S2

RNA degradation plots of all 20 oligonucleotide microarrays. The log-transformed preprocessed values of the probes having 16 probe pair sets on the arrays are presented in the 5′ to 3′ orientation (DOC 78 kb)

Supplementary Fig. S3

Distribution of ABA-responsive transcripts according to their MIPS functional categories (MIPS 2.0) expressed in the in vitro-cultured berry skins of Cabernet Sauvignon at 10 days after the treatment. A total of 453 upregulated and 546 downregulated ABA-responsive transcripts are represented in a pie chart. The categories marked by black and white diamond were respectively over- and underrepresented in the transcript set relative to the entire chip after statistical analysis (chi-square test, p < 0.05). Significant differences between the distribution of the upregulated transcripts and that of the downregulated transcripts are indicated with a star-shaped pentagon (chi-square test, p < 0.05). The unclassified category includes categories; classification not yet clear-cut, unclassified proteins, and other categories in which a few transcripts were assigned (DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyama, K., Sadamatsu, K. & Goto-Yamamoto, N. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomics 10, 367–381 (2010). https://doi.org/10.1007/s10142-009-0145-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-009-0145-8

Keywords

Navigation