Skip to main content
Log in

Characterization of the Gene Repertoire and Environmentally Driven Expression Patterns in Tanner Crab (Chionoecetes bairdi)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Tanner crab (Chionoecetes bairdi) is an economically important species that is threatened by ocean warming and bitter crab disease, which is caused by an endoparasitic dinoflagellate, Hematodinium. Little is known about disease transmission or its link to host mortality, or how ocean warming will affect pathogenicity or host susceptibility. To provide a transcriptomic resource for the Tanner crab, we generated a suite of RNA-seq libraries encompassing pooled hemolymph samples from crab displaying differing infection statuses and maintained at different temperatures (ambient (7.5˚C), elevated (10˚C), or decreased (4˚C)). After assembling a transcriptome and performing a multifactor differential gene expression analysis, we found genes influenced by temperature in relation to infection and detected some of those genes over time at the individual level using RNA-seq data from one crab. Biological processes associated with those genes include lipid storage, transcription, response to oxidative stress, cell adhesion, and morphogenesis. Alteration in lipid storage and transcription provide insight into how temperature impacts energy allocation in Hematodinium infected crabs. Alteration in expression patterns in genes associated with morphogenesis could suggest that hemocytes were changing morphology and/or type in response to temperature. This project provides insight into how Hematodinium infection could influence crab physiology as oceans warm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Material

The datasets generated during and/or analyzed during the current study are available in the RobertsLab/paper-tanner-crab repository, available at https://doi.org/10.5281/zenodo.4563060. All raw sequencing data is available in the NCBI Sequence Read Archive (SRR11548643—SRR11548677).

Code Availability

Code is available at https://doi.org/10.5281/zenodo.4563060.

References

  • Alaska Department of Fish and Game Tanner crab species profile (1994) In: Alaska Department of Fish and Game. http://www.adfg.alaska.gov/index.cfm?adfg=tannercrab.main. Accessed 15 Apr 2020

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Andrews S (2010) FASTQC: a quality control tool for high throughput sequence data

  • Bednarski J, Siddon CE, Bishop GH, Morado JF (2011) Overview of bitter crab disease in Tanner crabs, Chionoecetes bairdi, in Southeast Alaska from 2001 to 2008. Biology and Management of Exploited Crab Populations under Climate Change

  • Bower SM, Carnegie RB, Goh B et al (2004) Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues. J Eukaryot Microbiol 51:325–332

    Article  CAS  PubMed  Google Scholar 

  • Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527

    Article  CAS  PubMed  Google Scholar 

  • Bruno JF, Selig ER, Casey KS, et al (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5:e124

  • Bryant DM, Johnson K, DiTommaso T et al (2017) A tissue-mapped Axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep 18:762–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler MJ, Tiggelaar JM, Shields JD, Butler MJ (2014) Effects of the parasitic dinoflagellate Hematodinium perezi on blue crab (Callinectes sapidus) behavior and predation. J Exp Mar Biol Ecol 461:381–388

    Article  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerenius L, Lee BL, Söderhäll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271

    Article  CAS  PubMed  Google Scholar 

  • Cerenius L, Soderhall K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    Article  CAS  PubMed  Google Scholar 

  • Chatton E, Poisson R (1931) Sur l’existence, dans le sang des crabs, de peridiniens parasites Hematodinium perezi n. G., n sp. (Syndinidae). C.r Seanc Soc Biol Paris 105:553–557

  • Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  • Crosson LM (2011) Development and validation of a quantitative real-time polymerase chain reaction (qPCR) assay to assess the impact of Hematodinium, a parasitic dinoflagellate, on Tanner crab populations in Alaska. University of Washington

  • Danecek P, Bonfield JK, Liddle J et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10.: https://doi.org/10.1093/gigascience/giab008

  • Eaton WD, Love DC, Botelho C et al (1991) Preliminary results on the seasonality and life cycle of the parasitic dinoflagellate causing bitter crab disease in Alaskan tanner crabs (Chionoecetes bairdi). J Invertebr Pathol 57:426–434

    Article  CAS  PubMed  Google Scholar 

  • Egami Y (2016) Molecular imaging analysis of Rab GTPases in the regulation of phagocytosis and macropinocytosis. Anat Sci Int 91:35–42

    Article  CAS  PubMed  Google Scholar 

  • Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaffari N, Sanchez-Flores A, Doan R et al (2014) Novel transcriptome assembly and improved annotation of the whiteleg shrimp (Litopenaeus vannamei), a dominant crustacean in global seafood mariculture. Sci Rep 4:7081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gornik SG, Albalat A, Atkinson RJA et al (2010) The influence of defined ante-mortem stressors on the early post-mortem biochemical processes in the abdominal muscle of the Norway lobster, Nephrops norvegicus (Linnaeus, 1758). Mar Biol Res 6:223–238

    Article  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Version 29. https://doi.org/10.1038/nbt.1883

  • Groner ML, Shields JD, Landers DF Jr et al (2018) Rising temperatures, molting phenology, and epizootic shell disease in the American lobster. Am Nat 192:E163–E177

    Article  PubMed  Google Scholar 

  • Gruebl T, Frischer ME, Sheppard M et al (2002) Development of an 18S rRNA gene-targeted PCR-based diagnostic for the blue crab parasite Hematodinium sp. Dis Aquat Organ 49:61–70

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR et al (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009b) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  Google Scholar 

  • Hudson DA, Shields JD (1994) Hematodinium australis n. sp., a parasitic dinoflagellate of the sand crab Portunus pelagicus from Moreton Bay. Australia Diseases of Aquatic Organisms 19:109–119

    Article  Google Scholar 

  • Huson DH, Beier S, Flade I et al (2016) MEGAN community edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:e1004957

  • Ivanova NV, Dewaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002

    Article  CAS  Google Scholar 

  • Jadamec LS, Donaldson WE, Cullenberg P (1999) Biological field techniques for Chionoecetes Crabs

  • Jensen PC, Califf K, Lowe V et al (2010) Molecular detection of Hematodinium sp. in Northeast Pacific Chionoecetes spp. and evidence of two species in the Northern Hemisphere. Dis Aquat Organ 89:155–166

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsolver MB, Huang Z, Hardy RW (2013) Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol 425:4921–4936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kon T, Isshiki T, Miyadai T, Honma Y (2011) Milky hemolymph syndrome associated with an intranuclear bacilliform virus in snow crab Chionoecetes opilio from the Sea of Japan. Fish Sci 77:999–1007

    Article  CAS  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Söderhäll I (2011) Crustacean hematopoiesis and the astakine cytokines. Blood 117:6417–6424

    Article  CAS  PubMed  Google Scholar 

  • Liu C-H, Cheng W, Chen J-C (2005) The peroxinectin of white shrimp Litopenaeus vannamei is synthesised in the semi-granular and granular cells, and its transcription is up-regulated with Vibrio alginolyticus infection. Fish Shellfish Immunol 18:431–444

    Article  CAS  PubMed  Google Scholar 

  • Love DC, Rice SD, Moles DA, Eaton WD (1993) Seasonal prevalence and intensity of bitter crab dinoflagellate infection and host mortality in Alaskan Tanner crabs Chionoecetes bairdi from Auke Bay, Alaska, USA. Dis Aquat Org 15:1–7

    Article  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyers TR, Botelho C, Koeneman TM et al (1990) Distribution of bitter crab dinoflagellate syndrome in southeast Alaskan Tanner crabs Chionoecetes bairdi. Dis Aquat Org 9:37–43

    Article  Google Scholar 

  • Meyers TR, Koeneman TM, Botelho C, Short S (1987) Bitter crab disease: a fatal dinoflagellate infection and marketing problem for Alaskan Tanner crabs Chionoecetes bairdi. Dis Aquat Org 3:195–216

    Article  Google Scholar 

  • Morado JF (2011) Protistan diseases of commercially important crabs: a review. J Invertebr Pathol 106:27–53

    Article  CAS  PubMed  Google Scholar 

  • Morado JF, Dawe EG, Mullowney D et al (2011) Climate change and the worldwide emergence of Hematodinium-associated disease: is there evidence for a relationship? Biology and Management of Exploited Crab Populations under Climate Change

  • Nappi AJ, Ottaviani E (2000) Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays 22:469–480

    Article  CAS  PubMed  Google Scholar 

  • Nielsen JK, James Taggart S, Shirley TC, Mondragon J (2007) Spatial distribution of juvenile and adult female Tanner crabs (Chionoecetes bairdi) in a glacial fjord ecosystem: implications for recruitment processes. ICES J Mar Sci 64:1772–1784

    Article  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Robalino J, Almeida JS, McKillen D et al (2007) Insights into the immune transcriptome of the shrimp Litopenaeus vannamei: tissue-specific expression profiles and transcriptomic responses to immune challenge. Physiol Genomics 29:44–56

    Article  CAS  PubMed  Google Scholar 

  • Rowley AF, Smith AL, Davies CE (2015) How does the dinoflagellate parasite Hematodinium outsmart the immune system of its crustacean hosts? PLoS Pathog 11:e1004724

  • Shields JD (2017) Collection techniques for the analyses of pathogens in crustaceans. J Crustac Biol 37:753–763

    Article  Google Scholar 

  • Shields JD, Taylor DM, O’Keefe PG et al (2007) Epidemiological determinants in outbreaks of bitter crab disease (Hematodinium sp.) in snow crabs Chionoecetes opilio from Conception Bay, Newfoundland. Canada Dis Aquat Organ 77:61–72

    Article  PubMed  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P et al (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    Article  PubMed  Google Scholar 

  • Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  • Stanke M, Diekhans M, Baertsch R, Haussler D (2008) Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24:637–644

    Article  CAS  PubMed  Google Scholar 

  • Stanke M, Schöffmann O, Morgenstern B, Waack S (2006a) Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanke M, Tzvetkova A, Morgenstern B (2006b) AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome Biol 7(Suppl 1):S11.1–8

  • Stanke M, Waack S (2003) Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19(Suppl 2):ii215–25

  • Tamone SL, Mondragon J, Andrews AG et al (2007) The relationship between circulating ecdysteroids and chela allometry in male Tanner crabs: evidence for a terminal molt in the genus Chionoecetes. J Crustac Biol 27:635–642

    Article  Google Scholar 

  • Tang H (2009) Regulation and function of the melanization reaction in Drosophila. Fly 3:105–111

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen B, Bickley LK, Santos EM et al (2015) De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways. BMC Genomics 16:458

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P-H, Huang T, Zhang X, He J-G (2014) Antiviral defense in shrimp: from innate immunity to viral infection. Antiviral Res 108:129–141

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse RM, Seppey M, Simão FA et al (2018) BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 35:543–548

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Ruan L, Shi H (2014) eIF2α of Litopenaeus vannamei involved in shrimp immune response to WSSV infection. Fish Shellfish Immunol 40:609–615

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was funded by the North Pacific Research Board (NPRB), project 1705. This work was facilitated through the use of advanced computational, storage, and networking infrastructure provided by the Hyak supercomputer system at the University of Washington. This work was also supported by the Alaska Department of Fish and Game through the collection of crab, providing personnel to assist in hemolymph withdrawals, and the monitoring of the crab in the Ted Stevens Marine Research Institute (TSMRI, NOAA facility, Juneau, AK) during the experiment.

Author information

Authors and Affiliations

Authors

Contributions

G.C. performed RNA extractions for sequencing, data analysis and interpretation, and manuscript writing and preparation for publication. P.J. contributed to project and experimental design and performed sample collection from live crab, qPCR, and manuscript writing and editing. S.W. assembled and annotated the transcriptome and provided manuscript writing and editing. S.R. contributed to the experimental and project design, guidance throughout data analysis and interpretation, and manuscript writing and editing.

Corresponding author

Correspondence to Steven Roberts.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.5281/zenodo.4563060

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crandall, G., Jensen, P.C., White, S.J. et al. Characterization of the Gene Repertoire and Environmentally Driven Expression Patterns in Tanner Crab (Chionoecetes bairdi). Mar Biotechnol 24, 216–225 (2022). https://doi.org/10.1007/s10126-022-10100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10100-8

Keywords

Navigation