Skip to main content
Log in

The Polymorphism of LvMMD2 and Its Association with Growth Traits in Litopenaeus vannamei

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The Pacific white shrimp Litopenaeus vannamei is one of the major economic aquaculture species. The growth trait is considered as the most important trait in L. vannamei aquaculture. Identification of the genetic components underlying growth-related traits in L. vannamei could be useful for the selective breeding of growth trait. Our previous work identified several growth-related SNPs by genome-wide association study (GWAS). Based on the assembled genome, we identified a new candidate gene (LvMMD2) beside the associated marker. This gene encodes the progestin and AdipoQ receptor 10 (PAQR10) protein. We further investigate the polymorphisms of LvMMD2 and their association with body weight of L. vannamei. By resequencing the coding region of LvMMD2, a total of 8 SNPs were identified, including 6 synonymous mutations and 2 nonsynonymous mutations. Association analyses based on a population of 322 individuals revealed that several SNPs located in the coding region of LvMMD2 were significantly associated with the body weight, especially the nonsynonymous mutation named as MMD_5 contributed the most association to the trait and it could explain 10.5% of phenotypic variance. In addition, several genes involved in growth and development have been identified as LvMMD2-interacting genes. These findings strongly suggested that LvMMD2 might be an important gene regulating the shrimp growth. More importantly, the MMD_5 could be a promising candidate locus for marker-assisted selection (MAS) of the body weight in L. vannamei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andriantahina F, Liu X, Huang H, Xiang J (2013) Selection for growth performance of tank-reared Pacific white shrimp, Litopenaeus vannamei. Chin J Oceanol Limnol 31:534–541

    Google Scholar 

  • Argue BJ, Arce SM, Lotz JM, Moss SM (2002) Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura syndrome virus. Aquaculture 204:447–460

    Google Scholar 

  • Bräuer AU, Nitsch R, Savaskan NE (2004) Identification of macrophage/microglia activation factor (MAF) associated with late endosomes/lysosomes in microglial cells. FEBS Lett 563:41–48

    PubMed  Google Scholar 

  • Demeure O, Duclos MJ, Bacciu N, Le Mignon G, Filangi O, Pitel F, Boland A, Lagarrigue S, Cogburn LA, Simon J (2013) Genome-wide interval mapping using SNPs identifies new QTL for growth, body composition and several physiological variables in an F2 intercross between fat and lean chicken lines. Genet Sel Evol 45:36

    PubMed  PubMed Central  Google Scholar 

  • Dong L, Han Z, Fang M, Xiao S, Wang Z (2019) Genome-wide association study identifies loci for body shape in the large yellow croaker (Larimichthys crocea). Aquacult Fish 4:3–8

    Google Scholar 

  • FAO (2018) The State of the World Fisheries and Aquaculture (SOFIA) 2018. Fisheries and Aquaculture Department, Rome, Italy 250 pp

    Google Scholar 

  • Fjalestad K, Gjedrem T, Carr W, Sweeney J (1997) Final report: the shrimp breeding program, selective breeding of Penaeus vannamei. The Oceanic Institute, Waimanalo

    Google Scholar 

  • Gaut BS, Long AD (2003) The lowdown on linkage disequilibrium. Plant Cell 15:1502–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks D, Sarkozy A, Muelas N, Köehler K, Huebner A, Hudson G, Chinnery PF, Barresi R, Eagle M, Polvikoski T (2010) A founder mutation in Anoctamin 5 is a major cause of limb girdle muscular dystrophy. Brain 134:171–182

    Google Scholar 

  • Hill WG (1974) Estimation of linkage disequilibrium in randomly mating populations. Heredity 33:229–239

    CAS  PubMed  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108

    CAS  PubMed  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    CAS  PubMed  Google Scholar 

  • Huang H, Jin T, He J, Ding Q, Xu D, Wang L, Zhang Y, Pan Y, Wang Z, Chen Y (2012) Progesterone and adipoQ receptor 11 links ras signaling to cardiac development in zebrafish. Arterioscler Thromb Vasc Biol 32:2158–2170

    CAS  PubMed  Google Scholar 

  • Huang W, Cheng C, Liu J, Zhang X, Ren C, Jiang X, Chen T, Cheng K, Li H, Hu C (2020) Fine mapping of the high-pH tolerance and growth trait-related quantitative trait loci (QTLs) and identification of the candidate genes in Pacific white shrimp (Litopenaeus vannamei). Mar Biotechnol 22:1–18

    CAS  PubMed  Google Scholar 

  • Jin Y, Ha N, Forés M, Xiang J, Gläßer C, Maldera J, Jiménez G, Edgar BA (2015) EGFR/Ras signaling controls Drosophila intestinal stem cell proliferation via Capicua-regulated genes. PLoS Genet 11:e1005634

    PubMed  PubMed Central  Google Scholar 

  • Jung H, Lyons RE, Hurwood DA, Mather PB (2013) Genes and growth performance in crustacean species: a review of relevant genomic studies in crustaceans and other taxa. Rev Aquac 5:77–110

    Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KT, Park EW, Moon S, Park HS, Kim HY, Jang GW, Choi BH, Chung H, Lee JW, Cheong IC (2006) Genomic sequence analysis of a potential QTL region for fat trait on pig chromosome 6. Genomics 87:218–224

    CAS  PubMed  Google Scholar 

  • Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB (1998) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 20:31–36

    CAS  PubMed  Google Scholar 

  • Lu X, Luan S, Hu LY, Mao Y, Tao Y, Zhong SP, Kong J (2016) High-resolution genetic linkage mapping, high-temperature tolerance and growth-related quantitative trait locus (QTL) identification in Marsupenaeus japonicus. Mol Gen Genomics 291:1391–1405

    CAS  Google Scholar 

  • Lu X, Kong J, Meng X, Cao B, Luo K, Dai P, Luan S (2018) Identification of SNP markers associated with tolerance to ammonia toxicity by selective genotyping from de novo assembled transcriptome in Litopenaeus vannamei. Fish Shellfish Immunol 73:158–166

    CAS  PubMed  Google Scholar 

  • Mueller JC (2004) Linkage disequilibrium for different scales and applications. Brief Bioinform 5:355–364

    CAS  PubMed  Google Scholar 

  • Neira R (2010) Breeding in aquaculture species: genetic improvement programs in developing countries. In: Proceedings of the 9th World Congress on Genetics Applied to Livestock Production

  • Peleman JD, Van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    CAS  PubMed  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing (Version 3.5.2). Available: https://www.R-project.org/

  • Rye M, Gjerde B, Gjedrem T (2010) Genetic improvement programs for aquaculture species in developed countries. In: Proceedings of the 9th world congress on genetics applied to livestock production

  • Shin JH, Blay S, Mcneney B, Graham J (2006) LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single. J Stat Softw 16:3

    Google Scholar 

  • Sun Z, Li S, Li F, Xiang J (2014) Bioinformatic prediction of WSSV-host protein-protein interaction. Biomed Res Int 2014:416543

    PubMed  PubMed Central  Google Scholar 

  • Svensk E, Ståhlman M, Andersson CH, Johansson M, Borén J, Pilon M (2013) PAQR-2 regulates fatty acid desaturation during cold adaptation in C. elegans. PLoS Genet 9:e1003801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Hu T, Arterburn M, Boyle B, Bright JM, Emtage PC, Funk WD (2005) PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J Mol Evol 61:372–380

    CAS  PubMed  Google Scholar 

  • Tangprasittipap A, Tiensuwan M, Withyachumnarnkul B (2010) Characterization of candidate genes involved in growth of black tiger shrimp Penaeus monodon. Aquaculture 307:150–156

    CAS  Google Scholar 

  • Taniguchi M, Basarab JA, Dodson MV, Moore SS (2008) Comparative analysis on gene expression profiles in cattle subcutaneous fat tissues. Comp Biochem Physiol Part D Genomics Proteomics 3:251–256

    PubMed  Google Scholar 

  • Thomas P, Pang Y, Dong J, Groenen P, Kelder JD, De Vlieg J, Zhu Y, Tubbs C (2007) Steroid and G protein binding characteristics of the seatrout and human progestin membrane receptor α subtypes and their evolutionary origins. Endocrinology 148:705–718

    CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48:1233–1241

    CAS  PubMed  Google Scholar 

  • Wang Q, Yu Y, Zhang Q, Zhang X, Yuan J, Huang H, Xiang J, Li F (2019) A novel candidate gene associated with body weight in the Pacific white shrimp Litopenaeus vannamei. Front Genet 10:520

    PubMed  PubMed Central  Google Scholar 

  • Xue Y (2013) Next-generation biotechnological breeding techniques for the future—designer breading by molecular modules. Bull Chin Acad Sci 28:308–314

    Google Scholar 

  • Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    CAS  PubMed  Google Scholar 

  • Yang Y, Wu L, Wu X, Li B, Huang W, Weng Z, Lin Z, Song L, Guo Y, Meng Z, Liu X, Xia J (2020) Identification of candidate growth-related SNPs and genes using GWAS in brown-marbled grouper (Epinephelus fuscoguttatus). Mar Biotechnol 22:153–166

    CAS  PubMed  Google Scholar 

  • Yu Y, Zhang X, Yuan J, Li F, Chen X, Zhao Y, Huang L, Zheng H, Xiang J (2015) Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific white shrimp Litopenaeus vannamei. Sci Rep 5:15612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Zhang X, Yuan J, Wang Q, Li S, Huang H, Li F, Xiang J (2017) Identification of sex-determining loci in Pacific white shrimp Litopeneaus vannamei using linkage and association analysis. Mar Biotechnol 19:277–286

    CAS  PubMed  Google Scholar 

  • Yu Y, Wang Q, Zhang Q, Luo Z, Wang Y, Zhang X, Huang H, Xiang J, Li F (2019) Genome scan for genomic regions and genes associated with growth trait in Pacific white shrimp Litopeneaus vannamei. Mar Biotechnol 21:374–383

    CAS  PubMed  Google Scholar 

  • Yue GH (2014) Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish Fish 15:376–396

    Google Scholar 

  • Zhang H, Wang Z, Wang S, Li H (2012) Progress of genome wide association study in domestic animals. J Anim Sci Biotechnol 3:26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yuan J, Sun Y, Li S, Gao Y, Yu Y, Liu C, Wang Q, Lv X, Zhang X (2019) Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat Commun 10:356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Wang X, Zhou T, Jin Y, Tan S, Jiang C, Geng X, Li N, Shi H, Zeng Q (2017) Genome-wide association study reveals multiple novel QTL associated with low oxygen tolerance in hybrid catfish. Mar Biotechnol 19:379–390

    CAS  PubMed  Google Scholar 

  • Zhou Z, Han K, Wu Y, Bai H, Ke Q, Pu F, Wang Y, Xu P (2019) Genome-wide association study of growth and body-shape-related traits in large yellow croaker (Larimichthys crocea) using ddRAD sequencing. Mar Biotechnol 21:655–670

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (2018 YFD0901301, 2018YFD0900303), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA24030105), Agricultural Variety Improvement Project of Shandong Province (2019LZGC014), and China Agriculture Research System-48.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhua Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Yu, Y., Zhang, Q. et al. The Polymorphism of LvMMD2 and Its Association with Growth Traits in Litopenaeus vannamei. Mar Biotechnol 22, 564–571 (2020). https://doi.org/10.1007/s10126-020-09977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-020-09977-0

Keywords

Navigation