Skip to main content

Advertisement

Log in

PfSMAD1/5 Can Interact with PfSMAD4 to Inhibit PfMSX to Regulate Shell Biomineralization in Pinctada fucata martensii

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The BMP2 signal transduced by SMAD1/5 plays an important role in osteoblast differentiation and bone formation. Shell formation of Pinctada fucata martensii is a typical biomineralization process that is similar to that of teeth/bone formation. However, whether the Pinctada fucata BMP2 (PfBMP2) signal transduced by PfSMAD1/5 occurs in P. f. martensii, how the PfBMP2 signal is transduced by PfSMAD1/5, and how PfSMAD1/5 regulates the biomineralization process in this species and other shellfish are poorly understood. Therefore, injection experiments of recombinant PfBMP2 and inhibitor dorsomorphin revealed that PfSMAD1/5 can transduce PfBMP2 signals. Subcellular localization and bimolecular fluorescence complementation assays indicated that PfSMAD1/5 phosphorylated by PfBMPR1b interacts with PfSMAD4 in the cytoplasm to form a complex, which translocates to the nucleus to transduce PfBMP2 signals. Co-immunoprecipitation and luciferase assays revealed that PfSMAD1/5 may interact with PfMSX to dislodge it from its binding element, resulting in initiation of mantle gene transcription. The in vivo functional assay showed that knockdown of PfMSAD1/5 decreased expression of shell matrix genes and disordered the nacreous layer, and the correlation assay of shell regeneration showed the concomitant expression pattern of PfSMAD1/5 and shell matrix genes. Together, these data showed that PfSMAD1/5 can transduce PfBMP2 signals to regulate shell biomineralization in P. f. martensii, which illustrated conservation of the BMP2-SMAD signal pathway among invertebrates. Particularly, the results suggest that there is only one PfMSX gene, which functions like the Hox gene in vertebrates, that interacts with PfSMAD1/5 in a protein–protein action form and plays the role of transcription repressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TGF:

Transcription growth factor

BMP:

Bone morphogenetic protein

BMPR:

BMP receptor

HOX:

Homotypic box gene

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

CO-IP:

Co-immunoprecipitation

RT-PCR:

Real-time polymerase chain reaction

BSA:

Bovine serum albumin

FITC:

Fluorescein isothiocyanate

DAPI:

6-Diamidino-2-pheny-lindole

BiFC:

Bimolecular fluorescence complementation

WT:

Wild type

MU:

Mutation

RNAi:

RNA interference

SEM:

Scanning electron microscopy

SBE:

SMAD binding element

Bambi:

BMP and activin membrane-bound inhibitor

EYFP:

Enhanced yellow fluorescent protein

References

  • Bahn SY, Jo BH, Choi YS, Cha HJ (2017) Control of nacre biomineralization by Pif80 in pearl oyster. Sci Adv 3:e1700765

    PubMed  PubMed Central  Google Scholar 

  • Benjamin M et al (2012) Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci U S A 109:20986–20991

    Google Scholar 

  • Binato R, Martinez CEA, Pizzatti L, Robert B, Abdelhay E (2006) SMAD 8 binding to mice Msx1 basal promoter is required for transcriptional activation. Biochem J 393:141–150

    CAS  PubMed  Google Scholar 

  • Boergermann JH, Kopf J, Yu PB, Knaus P (2010) Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 42:1802–1807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Chen D (2005) The BMP signaling and in vivo bone formation. Gene 357:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daisuke F et al (2014) Novel genes participating in the formation of prismatic and nacreous layers in the pearl oyster as revealed by their tissue distribution and RNA interference knockdown. Plos One 9:e84706

    Google Scholar 

  • Fang D, Xu GR, Hu YL, Pan C, Xie LP, Zhang RQ (2011) Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata. Plos One 6:e21860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng D, Li Q, Yu H (2019) RNA interference by ingested dsRNA-expressing bacteria to study shell biosynthesis and pigmentation in Crassostrea gigas. Mar Biotechnol (NY) 21:526–536

    CAS  Google Scholar 

  • Heldin CH, Miyazono K, Ten DP (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471

    CAS  PubMed  Google Scholar 

  • Herpin A, Lelong C, Becker T, Rosa F, Favrel P, Cunningham C (2010) Structural and functional evidence for a singular repertoire of BMP receptor signal transducing proteins in the lophotrochozoan Crassostrea gigas suggests a shared ancestral BMP/activin pathway. Febs J 272:3424–3440

    Google Scholar 

  • Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZip and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    CAS  PubMed  Google Scholar 

  • Iijima M, Takeuchi T, Sarashina I, Endo K (2008) Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis. Dev Genes Evol 218:237–251

    CAS  PubMed  Google Scholar 

  • Jin C, Zhao JY, Liu XJ, Li JL (2019) Expressions of shell matrix protein genes in the pearl sac and its correlation with pearl weight in the first 6 months of pearl formation in Hyriopsis cumingii. Mar Biotechnol (NY) 21:240–249

    CAS  Google Scholar 

  • Katagiri T, Osawa K, Tsukamoto S, Mai F, Miyamoto A, Mizuta T (2015) Bone morphogenetic protein-induced heterotopic bone formation: what have we learned from the history of a half century? Jpn Dent Sci Rev 51:42–50

    Google Scholar 

  • Kim J, Johnson K, Chen HJ, Carroll S, Laughon A (1997) Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388:304–308

    CAS  PubMed  Google Scholar 

  • Kin K, Kakoi S, Wada H (2009) A novel role for dpp in the shaping of bivalve shells revealed in a conserved molluscan developmental program. Dev Biol 329:152–166

    CAS  PubMed  Google Scholar 

  • Kodama Y, Hu CD (2010) An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio. Biotechniques 49:793–805

    CAS  PubMed  Google Scholar 

  • Kofron MD, Li X, Laurencin CT (2004) Protein- and gene-based tissue engineering in bone repair. Curr Opin Biotechnol 15:399–405

    CAS  PubMed  Google Scholar 

  • Lelong C, Badariotti F, Quéré HL, Rodet F, Dubos MP, Favrel P (2007) Cg-TGF-beta, a TGF-beta/activin homologue in the Pacific oyster Crassostrea gigas, is involved in immunity against gram-negative microbial infection. Dev Comp Immunol 31:30–38

    CAS  PubMed  Google Scholar 

  • Li S, Liu Y, Huang J, Zhan A, Xie L, Zhang R (2017a) The receptor genes PfBMPR1B and PfBAMBI are involved in regulating shell biomineralization in the pearl oyster Pinctada fucata. Sci Rep 7:9219

    PubMed  PubMed Central  Google Scholar 

  • Li H, Zhang B, Fan S, Liu B, Su J, Yu D (2017b) Identification and differential expression of biomineralization genes in the mantle of pearl oyster Pinctada fucata. Mar Biotechnol (NY) 219:266–276

    Google Scholar 

  • Liu G, Huan P, Liu BZ (2014) Cloning and expression patterns of two Smad genes during embryonic development and shell formation of the Pacific oyster Crassostrea gigas. Chin J Oceanol Limnol 32:1224–1231

    CAS  Google Scholar 

  • Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, Aburatani H, Nishimura R, Yoneda T (2008) BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem 283:29119–29125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mi Z, Maoxian H, Xiande H, Qi W (2014) A homeodomain transcription factor gene, PfMSX, activates expression of Pif gene in the pearl oyster Pinctada fucata. Plos One 9:e103830

    Google Scholar 

  • Mi Z, Yu S, He M, Huang X, Qi W (2016) PfSMAD4 plays a role in biomineralization and can transduce bone morphogenetic protein-2 signals in the pearl oyster Pinctada fucata. BMC Dev Biol 16:1–9

    Google Scholar 

  • Miyashita T, Hanashita T, Toriyama M, Takagi R, Akashika T, Higashikubo N (2008) Gene cloning and biochemical characterization of the BMP-2 of Pinctada fucata. Biosci Biotechnol Biochem 72:37–47

    CAS  PubMed  Google Scholar 

  • Mount AS, Wheeler AP, Paradkar RP, Snider D (2004) Hemocyte-mediated shell mineralization in the eastern oyster. Science 304:297–300

    CAS  PubMed  Google Scholar 

  • Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    CAS  PubMed  Google Scholar 

  • Nederbragt AJ, Loon AEV, Dictus WJAG (2002) Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 246:341–355

    CAS  PubMed  Google Scholar 

  • Nishimura R, ., Kato Y, ., Chen D, ., Harris SE, Mundy GR, Yoneda T, . (1998) Smad5 and DPC4 are key molecules in mediating BMP-2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12. J Biol Chem 273:1872–1879

    CAS  PubMed  Google Scholar 

  • Onichtchouk D, Chen YG, Dosch R, Gawantka V, Dellus H, Massague J, Niehrs C (1999) Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 401:480–485

    CAS  PubMed  Google Scholar 

  • Quéré HL, Herpin A, Huvet A, Lelong C, Favrel P (2009) Structural and functional characterizations of an Activin type II receptor orthologue from the pacific oyster Crassostrea gigas. Gene 436:101–107

    PubMed  Google Scholar 

  • Raftery LA, Sutherland DJ (1999) TGF-beta family signal transduction in Drosophila development: from Mad to Smads. Dev Biol 210:251–268

    CAS  PubMed  Google Scholar 

  • Reinhardt B, Broun M, Blitz IL, Bode HR (2004) HyBMP5-8b, a BMP5-8 orthologue, acts during axial patterning and tentacle formation in hydra. Dev Biol 267:43–59

    CAS  PubMed  Google Scholar 

  • Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW (1996) Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A 93:790–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Yang X, Chen D, Chang Z, Cao X (1999) Smad1 interacts with homeobox DNA-binding proteins in bone morphogenetic protein signaling. J Biol Chem 274:13711–13717

    CAS  PubMed  Google Scholar 

  • Shi Y, Xu M, Huang J, Zhang H, Liu W, Ou Z, He M (2019) Transcriptome analysis of mantle tissues reveals potential biomineralization-related genes in Tectus pyramis Born. Comp Biochem Physiol Part D Genomics Proteomics 29:131–144

    CAS  PubMed  Google Scholar 

  • Shimizu K, Sarashina I, Kagi H, Endo K (2011) Possible functions of Dpp in gastropod shell formation and shell coiling. Dev Genes Evol 221:59–68

    CAS  PubMed  Google Scholar 

  • Sierra MI, Wright MH, Nash PD (2010) AMSH interacts with ESCRT-0 to regulate the stability and trafficking of CXCR4. J Biol Chem 285:13990–14004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Nagasawa H (2013) Mollusk shell structures and their formation mechanism. Can J Zool 91:349–366

    CAS  Google Scholar 

  • Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325:1388–1390

    CAS  PubMed  Google Scholar 

  • Takahashi H, Kamiya A, Ishiguro A, Suzuki AC, Saitou N, Toyoda A, Aruga J (2008) Conservation and diversification of Msx protein in metazoan evolution. Mol Biol Evol 25:69–82

    CAS  PubMed  Google Scholar 

  • Takami A, Kato H, Takagi R, Miyashita T (2013) Studies on the Pinctada fucata BMP-2 gene: structural similarity and functional conservation of its osteogenic potential within the animal kingdom. Int J Zool 2013:1–9

    Google Scholar 

  • Vidi PA, Ejendal KF, Przybyla JA, Watts VJ (2011) Fluorescent protein complementation assays: new tools to study G protein-coupled receptor oligomerization and GPCR-mediated signaling. Mol Cell Endocrinol 331:185–193

    CAS  PubMed  Google Scholar 

  • von Bubnoff A, Cho KW (2001) Intracellular BMP signaling regulation in vertebrates: pathway or network? Dev Biol 239:1–14

    Google Scholar 

  • Yamamoto N, Akiyama S, Katagiri T, Namiki M, Kurokawa T, Suda T (1997) Smad1 and Smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts. Biochem Biophys Res Commun 238:574

    CAS  PubMed  Google Scholar 

  • Yan F, Luo S, Jiao Y, Deng Y, du X, Huang R, Wang Q, Chen W (2014) Molecular characterization of the BMP7 gene and its potential role in shell formation in Pinctada martensii. Int J Mol Sci 15:21215–21228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM (2005) Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 102:5062–5067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu PB et al (2008) Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4:33–41

    CAS  PubMed  Google Scholar 

  • Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE (1998) Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1:611–617

    CAS  PubMed  Google Scholar 

  • Zhang C, Zhang RQ (2006) Matrix proteins in the outer shells of molluscs. Mar Biotechnol 8:572–586

    PubMed  Google Scholar 

  • Zhang N, Gong ZZ, Minden M, Lu M (1993) The HOX-11 (TCL-3) homeobox proto-oncogene encodes a nuclear protein that undergoes cell cycle-dependent regulation. Oncogene 8:3265

    CAS  PubMed  Google Scholar 

  • Zhang Y, Feng X, We R, Derynck R (1996) Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature 383:168

    CAS  PubMed  Google Scholar 

  • Zhou YJ et al (2010) Correlations among mRNA expression levels of engrailed, BMP2 and Smad3 in mantle cells of pearl oyster Pinctada fucata. Prog Biochem Biophys 37:737–746

    CAS  Google Scholar 

  • Zoccola D, Moya A, Beranger GE, Tambutte E, Allemand D, Carle GF, Tambutte S (2009) Specific expression of BMP2/4 ortholog in biomineralizing tissues of corals and action on mouse BMP receptor. Mar Biotechnol (NY) 11:260–269

    CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (grant no. 41606151), Natural Science Foundation of Guangdong Province, China (grant no. 2019A1515011968), the Earmarked Fund for the Modern Agro-industry Technology Research System (grant no. CARS-49), and the Science and Technology Planning Project of Guangdong Province, China (2017B0303014052).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and M.H. planned and designed the research. Y.S. performed experiments, analyzed data, and wrote the paper. M.Z. performed the subcellular localization and BiFC assay. All the authors reviewed, edited, and revised the manuscript.

Corresponding author

Correspondence to Maoxian He.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zhao, M. & He, M. PfSMAD1/5 Can Interact with PfSMAD4 to Inhibit PfMSX to Regulate Shell Biomineralization in Pinctada fucata martensii. Mar Biotechnol 22, 246–262 (2020). https://doi.org/10.1007/s10126-020-09948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-020-09948-5

Keywords

Navigation