Skip to main content
Log in

Convergent Evolution of the Osmoregulation System in Decapod Shrimps

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

In adaptating to different aquatic environments, seawater (SW) and freshwater (FW) shrimps have exploited different adaptation strategies, which should generate clusters of genes with different adaptive features. However, little is known about the genetic basis of these physiological adaptations. Thus, in this study, we performed comparative transcriptomics and adaptive evolution analyses on SW and FW shrimps and found that convergent evolution may have happened on osmoregulation system of shrimps. We identified 275 and 234 positively selected genes in SW and FW shrimps, respectively, which enriched in the functions of ion-binding and membrane-bounded organelles. Among them, five (CaCC, BEST2, GPDH, NKA, and Integrin) and four (RasGAP, RhoGDI, CNK3, and ODC) osmoregulation-related genes were detected in SW and FW shrimps, respectively. All five genes in SW shrimps have been reported to have positive effects on ion transportation, whereas RasGAP and RhoGDI in FW shrimps are associated with negative control of ion transportation, and CNK3 and ODC play central roles in cation homeostasis. Besides, the phylogenetic tree reconstructed from the positively selected sites separated the SW and FW shrimps into two groups. Distinct subsets of parallel substitutions also have been found in these osmoregulation-related genes in SW and FW shrimps. Therefore, our results suggest that distinct convergent evolution may have occurred in the osmoregulation systems of SW and FW shrimps. Furthermore, positive selection of osmoregulation-related genes may be beneficial for the regulation of water and salt balance in decapod shrimps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahearn GA, Mandal PK, Mandal A (2004) Calcium regulation in crustaceans during the molt cycle: a review and update. Comp Biochem Physiol A Mol Integr Physiol 137:247–257

  • Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-Osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomberg A, Adler L (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171:1087–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracken HD, Toon A, Felder DL, Martin JW, Finley M, Rasmussen J, Palero F, Crandall KA (2009) The decapod tree of life: compiling the data and moving toward a consensus of decapod evolution. Arthropod Syst Phylogeny 67:99–116

    Google Scholar 

  • Castellano, D, Coronado, M, Campos, J, Barbadilla, A, Eyre-Walker, A (2015). Adaptive evolution is substantially impeded by Hill-Robertson interference in Drosophila. BioRxiv. doi:10.1101/021600

  • Catherine L-N, Viviane B, Charlotte B, Guy C (2006) The Na+/K+/2Cl- cotransporter in the sea bass Dicentrarchus labrax ontogeny: involvement in osmoregulation. J Exp Biol 209:4908–4922

    Article  Google Scholar 

  • Charmantier G, Anger K (2011) Ontogeny of osmoregulatory patterns in the south American shrimp Macrobrachium amazonicum: loss of hypo-regulation in a land-locked population indicates phylogenetic separation from estuarine ancestors. J Exp Mar Biol Ecol 396:89–98

  • Cheng W, Chen JC (2000) Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immun 10:387–391

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309

  • Cutler CP, Martinez AS, Cramb G (2007) The role of aquaporin 3 in teleost fish. Comp Biochem Physiol A Mol Integr Physiol 148:82–91

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defaveri J, Shikano T, Shimada Y, Goto A, Merila J (2011) Global analysis of genes involved in freshwater adaptation in threespine sticklebacks (Gasterosteus aculeatus). Evolution 65:1800–1807

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

  • Eggermont J, Trouet D, Carton I, Nilius B (2001) Cellular function and control of volume-regulated anion channels. Cell Biochem Biophys 35:263–274

  • Erler S, Lhomme P, Rasmont P, Lattorff HMG (2014) Rapid evolution of antimicrobial peptide genes in an insect host-social parasite system. Infect Genet Evol 23:129–137

  • Evans DH, Piermarini PM, Potts WTW (1999) Ionic transport in the fish gill epithelium. J Exp Zool 283:641–652

    Article  CAS  Google Scholar 

  • Faria SC, Augusto AS, Mcnamara JC (2011) Intra- and extracellular osmotic regulation in the hololimnetic Caridea and Anomura: a phylogenetic perspective on the conquest of fresh water by the decapod Crustacea. J Comp Physiol B 181:175–186

  • Foote AD, Liu Y, Thomas GW, Vinar T, Alfoldi J, Deng J, Dugan S, Van Elk CE, Hunter ME, Joshi V, Khan Z, Kovar C, Lee SL, Lindblad-Toh K, Mancia A, Nielsen R, Qin X, Qu J, Raney BJ, Vijay N, Wolf JB, Hahn MW, Muzny DM, Worley KC, Gilbert MT, Gibbs RA (2015) Convergent evolution of the genomes of marine mammals. Nat Genet 47:272–275

  • Freire CA, Onken H, Mcnamara JC (2008) A structure-function analysis of ion transport in crustacean gills and excretory organs. Comp Biochem Physiol A Mol Integr Physiol 151:272–304

  • Gao WH, Tan BP, Mai KS, Chi SY, Liu HY, Dong XH, Yang QH (2012) Profiling of differentially expressed genes in hepatopancreas of white shrimp (Litopenaeus vannamei) exposed to long-term low salinity stress. Aquaculture 364:186–191

  • Gillett R (2008) Global Study of Shrimp Fisheries. FAO Fisheries Technical Paper, no 475. FAO, Rome, p 331

  • Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

  • Guan Y, Zhang GX, Zhang S, Domangue B, Galvez F (2016) The potential role of polyamines in gill epithelial remodeling during extreme hypoosmotic challenges in the Gulf killifish, Fundulus grandis. Comp Biochem Physiol B Biochem Mol Biol 194-195:39–50

  • Guinand B, Quéré N, Desmarais E, Lagnel J, Tsigenopoulos CS, Bonhomme F (2015) From the laboratory to the wild: salinity-based genetic differentiation of the European sea bass (Dicentrarchus labrax) using gene-associated and gene-independent microsatellite markers. Mar Biol 162:515–538

    Article  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

  • Havird JC, Henry RP, Wilson AE (2013a) Altered expression of Na(+)/K(+)-ATPase and other osmoregulatory genes in the gills of euryhaline animals in response to salinity transfer: a meta-analysis of 59 quantitative PCR studies over 10 years. Comp Biochem Physiol Part D Genomics Proteomics 8:131–140

  • Havird JC, Henry RP, Wilson AE (2013b) Altered expression of Na+/K + −ATPase and other osmoregulatory genes in the gills of euryhaline animals in response to salinity transfer: a meta-analysis of 59 quantitative PCR studies over 10 years. Comp Biochem Physiol Part D Genomics Proteomics 8:131–140

  • Henry RP, Watts SA (2001) Early carbonic anhydrase induction in the gills of the blue crab, Callinectes sapidus, during low salinity acclimation is independent of ornithine decarboxylase activity. J Exp Zool 289:350–358

  • Henry RP, Lucu C, Onken H, Weihrauch D (2012) Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 3:431

  • Hu D, Pan L, Zhao Q, Ren Q (2015) Transcriptomic response to low salinity stress in gills of the Pacific white shrimp, Litopenaeus vannamei. Mar Genomics. doi:10.1016/j.margen.2015.07.003

    Google Scholar 

  • Hwang PP, Lee TH (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148:479–497

  • Ismailov I, Fuller CM, Berdiev BK, Shlyonsky VG, Benos DJ, Barrett KE (1996) A biologic function for an "orphan" messenger: D-myo-inositol 3,4,5,6-tetrakisphosphate selectively blocks epithelial calcium-activated chloride channels. Proc Natl Acad Sci U S A 93:10505–10509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonski CL, Ferguson S, Pozzi A, Clark AL (2014) Integrin alpha1beta1 participates in chondrocyte transduction of osmotic stress. Biochem Biophys Res Commun 445:184–190

  • Kent WJ (2002) BLAT--the BLAST-like alignment tool. Genome Res 12:656–664

  • Kirschner LB (2004) The mechanism of sodium chloride uptake in hyperregulating aquatic animals. J Exp Biol 207:1439–1452

    Article  CAS  PubMed  Google Scholar 

  • Li H, Coghlan A, Ruan J, Coin LJ, Heriche JK, Osmotherly L, Li R, Liu T, Zhang Z, Bolund L, Wong GK, Zheng W, Dehal P, Wang J, Durbin R (2006) TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res 34:D572–D580

  • Li EC, Chen LQ, Zeng C, Chen XM, Yu N, Lai QM, Qin JG (2007) Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities. Aquaculture 265:385–390

  • Li ZW, Shen YH, Xiang ZH, Zhang Z (2011) Pathogen-origin horizontally transferred genes contribute to the evolution of Lepidopteran insects. BMC Evol Biol 11:356

  • Li CZ, Weng SP, Chen YG, Yu XQ, Lu L, Zhang HQ, He JG, Xu XP (2012) Analysis of Litopenaeus vannamei transcriptome using the next-generation DNA sequencing technique. PLoS One 7. doi:10.1371/journal.pone.0047442

  • Lin FJ, Liu Y, Sha Z, Tsang LM, Chu KH, Chan TY, Liu R, Cui Z (2012a) Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes. BMC Genomics 13:631

  • Lin YC, Chen JC, Li CC, Morni WZW, Suhaili ASNA, Kuo YH, Chang YH, Chen LL, Tsui WC, Chen YY, Huang CL (2012b) Modulation of the innate immune system in white shrimp Litopenaeus vannamei following long-term low salinity exposure. Fish Shellfish Immunol 33:324–331

  • Mancera JM, Carrion RL, Del Rio MDM (2002) Osmoregulatory action of PRL, GH, and cortisol in the gilthead seabream (Sparus aurata L.). Gen Comp Endocrinol 129:95–103

    Article  Google Scholar 

  • Marra NJ, Romero A, Dewoody JA (2014) Natural selection and the genetic basis of osmoregulation in heteromyid rodents as revealed by RNA-seq. Mol Ecol 23:2699–2711

  • Mcnamara JC, Faria SC (2012) Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. J Comp Physiol B 182:997–1014

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

  • Nilsen TO, Ebbesson LO, Madsen SS, Mccormick SD, Andersson E, Bjornsson BT, Prunet P, Stefansson SO (2007) Differential expression of gill Na+,K+-ATPase alpha- and beta-subunits, Na+,K+,2Cl cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J Exp Biol 210:2885–2896

  • Nur FAH, Christianus A (2013) Breeding and life cycle of Neocaridina denticulata Sinensis (Kemp, 1918). Asian J Anim Vet Adv 8:108–115

  • Olson-Manning CF, Wagner MR, Mitchell-Olds T (2012) Adaptive evolution: evaluating empirical support for theoretical predictions. Nat Rev Genet 13:867–877

  • Park MS, Min BH, Moon TS, Lim HK, Choi CY, Chang YJ, Kho KH (2012) Osmoregulatory ability and stress responses during freshwater adaptation of black porgy (Acanthopagrus schlegeli) treated with exogenous prolactin. Aquac Res 43:1891–1899

  • Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619

  • Perez-Velazquez M, Gonzalez-Felix ML, Jaimes-Bustamente F, Martinez-Cordova LR, Trujillo-Villalba DA, Davis DA (2007) Investigation of the effects of salinity and dietary protein level on growth and survival of Pacific white shrimp, Litopenaeus vannamei. J World Aquacult Soc 38:475–485

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

  • Pochynyuk O, Stockand JD, Staruschenko A (2007) Ion channel regulation by ras, rho, and Rab small GTPases. Exp Biol Med (Maywood) 232:1258–1265

  • Ponce-Palafox J, Martinez-Palacios CA, Ross LG (1997) The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture 157:107–115

  • Prayitno SB, Latchford JW (1995) Experimental infections of crustaceans with luminous bacteria related to photobacterium and Vibrio - effect of salinity and ph on infectiosity. Aquaculture 132:105–112

  • Rivero F, Illenberger D, Somesh BP, Dislich H, Adam N, Meyer AK (2002) Defects in cytokinesis, actin reorganization and the contractile vacuole in cells deficient in RhoGDI. EMBO J 21:4539–4549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rozas LP, Minello TJ (2011) Variation in penaeid shrimp growth rates along an estuarine salinity gradient: implications for managing river diversions. J Exp Mar Biol Ecol 397:196–207

  • Schreiber F, Patricio M, Muffato M, Pignatelli M, Bateman A (2014) TreeFam v9: a new website, more species and orthology-on-the-fly. Nucleic Acids Res 42:D922–D925

  • Shekhar MS, Kiruthika J, Ponniah AG (2013) Identification and expression analysis of differentially expressed genes from shrimp (Penaeus monodon) in response to low salinity stress. Fish Shellfish Immunol 35:1957–1968

  • Soundararajan R, Ziera T, Koo E, Ling K, Wang J, Borden SA, Pearce D (2012) Scaffold protein connector enhancer of kinase suppressor of ras isoform 3 (CNK3) coordinates assembly of a multiprotein epithelial sodium channel (ENaC)-regulatory complex. J Biol Chem 287:33014–33025

  • Stetak A, Gutierrez P, Hajnal A (2008) Tissue-specific functions of the Caenorhabditis elegans p120 ras GTPase activating protein GAP-3. Dev Biol 323:166–176

  • Stewart CB, Schilling JW, Wilson AC (1987) Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 330:401–404

  • Strasburg JL, Kane NC, Raduski AR, Bonin A, Michelmore R, Rieseberg LH (2011) Effective population size is positively correlated with levels of adaptive divergence among annual sunflowers. Mol Biol Evol 28:1569–1580

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 00:2.3:2.3.1–2.3.22

  • TJM S, Verbost PM, Flik G, Wendelaar Bonga SE (1993) Transcellular intestinal calcium transport in freshwater and seawater fish and its dependence on sodium/calcium exchange. J Exp Biol 176:195–206

    Google Scholar 

  • Towle DW, Henry RP, Terwilliger NB (2011) Microarray-detected changes in gene expression in gills of green crabs (Carcinus maenas) upon dilution of environmental salinity. Comp Biochem Physiol Part D Genomics Proteomics 6:115–125

  • Wang LU, Chen JC (2005) The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish Shellfish Immunol 18:269–278

  • Wei JK, Zhang XJ, Yu Y, Huang H, Li FH, Xiang JH (2014) Comparative Transcriptomic characterization of the early development in Pacific white shrimp Litopenaeus vannamei. PLoS One 9. doi:10.1371/journal.pone.0106201

  • Wheatly MG, Gao Y (2004) Molecular biology of ion motive proteins in comparative models. J Exp Biol 207:3253–3263

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

  • Yu XJ, Zheng HK, Wang J, Wang W, Su B (2006) Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup. Genomics 88:745–751

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

  • Zhu B, Lou MM, Xie GL, Zhang GQ, Zhou XP, Li B, Jin GL (2011) Horizontal gene transfer in silkworm, Bombyx mori. BMC Genomics 12:248

  • Ziera T, Irlbacher H, Fromm A, Latouche C, Krug SM, Fromm M, Jaisser F, Borden SA (2009) Cnksr3 is a direct mineralocorticoid receptor target gene and plays a key role in the regulation of the epithelial sodium channel. FASEB J 23:3936–3946

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Elayaraja Sivaramasamy for his help on editing the manuscript. This work was supported by a grant from National Natural Science Foundation of China (Grant No. 41506189, 31672632), National High-Tech Research and Development Program of China (863 Program, 2012AA10A404, 2012AA10A402), National Program on Key Basic Research Project (973 program, 2012CB114403), and The Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (2015ASKJ02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Zhang or Jianhai Xiang.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOC 655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Zhang, X., Liu, C. et al. Convergent Evolution of the Osmoregulation System in Decapod Shrimps. Mar Biotechnol 19, 76–88 (2017). https://doi.org/10.1007/s10126-017-9729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-017-9729-9

Keywords

Navigation