Skip to main content
Log in

cDNA Microarray Analysis Revealing Candidate Biomineralization Genes of the Pearl Oyster, Pinctada fucata martensii

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Biomineralization is a common biological phenomenon resulting in strong tissue, such as bone, tooth, and shell. Pinctada fucata martensii is an ideal animal for the study of biomineralization. Here, microarray technique was used to identify biomineralization gene in mantle edge (ME), mantle center (MC), and both ME and MC (ME-MC) for this pearl oyster. Results revealed that 804, 306, and 1127 contigs expressed at least three times higher in ME, MC, and ME-MC as those in other tissues. Blast against non-redundant database showed that 130 contigs (16.17 %), 53 contigs (17.32 %), and 248 contigs (22.01 %) hit reference genes (E ≤ −10), among which 91 contigs, 48 contigs, and 168 contigs could be assigned to 32, 26, and 63 biomineralization genes in tissue of ME, MC, and ME-MC at a threshold of 3 times upregulated expression level. The ratios of biomineralization contigs to homologous contigs were similar at 3 times, 10 times, and 100 times of upregulated expression level in either ME, MC, or ME-MC. Moreover, the ratio of biomineralization contigs was highest in MC. Although mRNA distribution characters were similar to those in other studies for eight biomineralization genes of PFMG3, Pif, nacrein, MSI7, mantle gene 6, Pfty1, prismin, and the shematrin, most biomineralization genes presented different expression profiles from existing reports. These results provided massive fundamental information for further study of biomineralization gene function, and it may be helpful for revealing gene nets of biomineralization and the molecular mechanisms underlining formation of shell and pearl for the oyster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta-Salmón H, Southgate PC (2006) Wound healing after excision of mantle tissue from the Akoya pearl oyster, Pinctada fucata. Comp Biochem Physiol A Mol Integr Physiol 143(2):264–268

    Article  PubMed  Google Scholar 

  • Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381:56–58

    Article  CAS  Google Scholar 

  • Chen Q, Gu ZF, Wang AM, Zhan X, Shi YH (2014) Data reassembling reveals more information of transcriptome for Pinctada fucata martensii Dunker. Prog Fish Sci 35(6):97–102. (In Chinese with English abstrct)

    Google Scholar 

  • Fang D, Xu G, Hu Y, Pan C, Xie L, Zhang R (2011) Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata. PLoS One 6(7):e21860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu ZF, Yin XL, Yu CC, Zhan X, Shi YH, Wang AM (2014) Expression profiles of nine biomineralization genes and their relationship with pearl nacre thickness in the pearl oyster, Pinctada fucata martensii Dunker. Aquac Res. doi:10.1111/are.12645

    Google Scholar 

  • Han Y, Tu WW, Wen YG, Li DP, Qiu GQ, Tang HM, Peng ZH, Zhou CZ (2013) Identification and validation that up-expression of HOXA13 is a novel independent prognostic marker of a worse outcome in gastric cancer based on immunohistochemistry. Med Oncol 30(2):564

    Article  PubMed  Google Scholar 

  • Inoue N, Ishibashi R, Ishikawa T, Atsumi T, Aoki H, Komura A (2010) Gene expression patterns and pearl formation in the Japanese pearl oyster (Pinctada fucata): a comparison of gene expression patterns between the pearl sac and the mantles tissues. Aquaculture 308:S68–S74

    Article  CAS  Google Scholar 

  • Jiang Y, Li ZS, Jiang FS, Deng X, Yao CS, Nie G (2005) Effects of different ingredients of zedoary on gene expression of HSC-T6 cells. World J Gastroenterol 11(43):6780–6786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Ge S, Xing L, Han D, Kang Z, Zhang G, Wang X, Wang X, Chen P, Cao A (2013) RLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici. J Exp Bot 64(12):3735–3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joubert C, Piquemal D, Marie B, Manchon L, Pierrat F, Zanella-Cléo I, Cochennec-Laureau N, Gueguen Y, Montagnani C (2010) Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization. BMC Genomics 11:613

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita S, Wang N, Inoue H, Maeyama K, Okamoto K, Nagai K, Kondo H, Hirono I, Asakawa S, Watabe S (2011) Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster. PLoS One 6(6):e21238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Y, Jing G, Yan Z, Li C, Gong N, Zhu F, Li D, Zhang Y, Zheng G, Wang H, Xie L, Zhang R (2009) Cloning and characterization of Prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer from the oyster Pinctada fucata. J Biol Chem 284:10841–10854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono M, Hayashi N, Samata T (2000) Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem Biophys Res Commun 269(1):213–218

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liu Q, Wang Y, Gu Y, Liu D, Wang C, Ding G, Chen J, Liu J, Gu X (2013) Differential gene expression profiling and biological process analysis in proximal nerve segments after sciatic nerve transection. PLoS One 8(2):e57000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long Y, Li L, Li Q, He X, Cui Z (2012) Transcriptomic characterization of temperature stress responses in larval zebrafish. PLoS One 7(5): e37209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Huang J, Sun J, Wang G, Li C, Xie L, Zhang R (2007) A novel extrapallial fluid protein controls the morphology of nacre lamellae in the pearl oyster, Pinctada fucata. J Biol Chem 282:23253–23263

    Article  CAS  PubMed  Google Scholar 

  • Mamangkey NG, Southgate PC (2009) Regeneration of excised mantle tissue by the silver-lip pearl oyster, Pinctada maxima (Jameson). Fish Shellfish Immunol 27(2):164–174

    Article  PubMed  Google Scholar 

  • Miyamoto H, Miyoshi F, Kohno J (2005) The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata. Zool Sci 22:311–315

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci U S A 93:9657–9660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashita T, Takagi Y, Miyamoto H, Matsushiro A (2000) Complementary DNA cloning and characterization of pearlin, a new class of matrix protein in the nacreous layer of oyster pearls. Mar Biotechnol 2:409–418

    CAS  PubMed  Google Scholar 

  • Nagai K, Yano M, Morimoto K, Miyamoto H (2007) Tyrosinase localization in mollusc shells. Comp Biochem Physiol B Biochem Mol Biol 146(2):207–214

    Article  PubMed  Google Scholar 

  • Narsai R, Wang C, Chen J, Wu J, Shou H, Whelan J (2013) Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress. BMC Genomics 14:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose-Martel M, Smiley S, Hincke MT (2015) Novel identification of matrix proteins involved in calcitic biomineralization. J Proteomics. doi:10.1016/j.jprot.2015.01.002

    PubMed  Google Scholar 

  • Samata T, Hayashi N, Kono M, Hasegawa K, Horita C, Akera S (1999) A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett 462:225–229

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Inoue N, Ishikawa T, Ishibashi R, Obata M, Aoki H, Atsumi T, Komaru A (2013) Pearl microstructure and expression of shell matrix protein genes MSI31 and MSI60 in the pearl sac epithelium of Pinctada fucata by in situ hybridization. PLoS One 8(1):e52372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi YH, Yu CC, Gu ZF, Zhan X, Wang Y, Wang AM (2013) Characterization of the pearl oyster (Pinctada martensii) mantle transcriptome unravels biomineralization genes. Mar Biotechnol 15:175–187

    Article  CAS  PubMed  Google Scholar 

  • Sudo S, Fujikawa T, Nagakura T, Tanaka M, Nakashima K, Takahashi T (1997) Structure of mollusk shell framework proteins. Nature 387:563–564

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Murayama E, Inoue H, Ozaki N, Tohse H, Kogure T, Nagasawa H (2004) Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem J 382:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325:1388–1390

    Article  CAS  PubMed  Google Scholar 

  • Takagi R, Miyashita T (2010) Prismin: a new matrix protein family in the Japanese pearl oyster (Pinctada fucata) involved in prismatic layer formation. Zool Sci 27:416–426

    Article  CAS  PubMed  Google Scholar 

  • Takahashi J, Takagi M, Okihana Y, Takeo K, Ueda T, Touhata K, Maegawa S, Toyohara H (2012) A novel silk-like shell matrix gene is expressed in the mantle edge of the Pacific oyster prior to shell regeneration. Gene 499(1):130–134

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Endo K (2006) Biphasic and dually coordinated expression of the genes encoding major shell matrix proteins in the pearl oyster Pinctada fucata. Mar Biotechnol 8:52–61

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto D, Sarashina I, Endo K (2004) Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem Biophys Res Commun 320:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Wada KT, Komaru A (1996) Color and weight of pearls produced by grafting the mantle tissue from a selected population for white shell color of the Japanese pearl oyster Pinctada fucata martensii (Dunker). Aquaculture 142:25–32

    Article  Google Scholar 

  • Wang N, Kinoshita S, Nomura N, Riho C, Maeyama K, Nagai K, Watabe S (2012) The mining of pearl formation genes in pearl oyster Pinctada fucata by cDNA suppression subtractive hybridization. Mar Biotechnol 14(2):177–188

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Kinoshita S, Riho C, Maeyama K, Nagai K, Watabe S (2009) Quantitative expression analysis of nacreous shell matrix protein genes in the process of pearl biogenesis. Comp Biochem Physiol B Biochem Mol Biol 154(3):346–350

    Article  PubMed  Google Scholar 

  • Wang X, Liu S, Xie L, Zhang R, Wang Z (2011) Pinctada fucata mantle gene 3 (PFMG3) promotes differentiation in mouse osteoblasts (MC3T3-E1). Comp Biochem Physiol B Biochem Mol Biol 158(2):173–180

    Article  PubMed  Google Scholar 

  • Xiang L, Su J, Zheng G, Liang J, Zhang G, Wang H, Xie L, Zhang R (2013) Patterns of expression in the matrix proteins responsible for nucleation and growth of aragonite crystals in flat pearls of Pinctada fucata. PLoS One 8(6):e66564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Du T, Zhao W, Hartmann T, Lu H, Lü Y, Ouyang H, Jiang X, Sun L, Jin C (2013) Transcriptome and biochemical analysis reveals that suppression of GPI-anchor synthesis leads to autophagy and possible necroptosis in Aspergillus fumigatus. PLoS One 8(3):e59013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano M, Nagai K, Morimoto K, Miyamoto H (2007) A novel nacre protein N19 in the pearl oyster Pinctada fucata. Biochem Biophys Res Commun 362:158–163

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Nagai K, Morimoto K, Miyamoto H (2006) Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol 144:254–262

    Article  PubMed  Google Scholar 

  • Zhan X, Gu ZF, Yu CC, Wen HY, Shi YH, Wang AM (2015) Expressed sequence tags 454 sequencing and biomineralization gene expression for pearl sac of the pearl oyster, Pinctada fucata martensii. Aquac Res 46(3):745–758

    Article  CAS  Google Scholar 

  • Zhang Y, Xie L, Meng Q, Jiang T, Pu R, Chen L, Zhang R (2003) A novel matrix protein participating in the nacre framework formation of pearl oyster, Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol 135:565–573

    Article  PubMed  Google Scholar 

  • Zhang C, Xie L, Huang J, Liu X, Zhang R (2006) A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata. Biochem Biophys Res Commun 344(3):735–740

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wang Q, Jiao Y, Huang R, Deng Y, Wang H, Du X (2012) Identification of genes potentially related to biomineralization and immunity by transcriptome analysis of pearl sac in pearl oyster Pinctada martensii. Mar Biotechnol 14:730–739

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Science Foundation of China (41366003 and 41076112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aimin Wang or Zhifeng Gu.

Additional information

Yaohua Shi and Xing Zheng are co-first authors

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Online Resource 1

Housekeeping genes. (XLS 1132 kb)

Online Resource 2

Probe sequences. (TXT 2195 kb)

Online Resource 3

Sequences of contig with at least 3 times up-regulated expression level in mantle tissues of P. fucata martensii. (XLS 154 kb)

Online Resource 4

Consensus and special contigs with at least 3 times up-regulated expression level compared between mantle tissues of ME and ME-MC, or MC and ME-MC of P. fucata martensii. (XLS 274 kb)

Online Resource 5

Expression level and blast results for the contigs with at least 3 times up-regulated expression level in mantle tissues of P. fucata martensii. (FA 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zheng, X., Zhan, X. et al. cDNA Microarray Analysis Revealing Candidate Biomineralization Genes of the Pearl Oyster, Pinctada fucata martensii . Mar Biotechnol 18, 336–348 (2016). https://doi.org/10.1007/s10126-016-9699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-016-9699-3

Keywords

Navigation