Skip to main content
Log in

Multigene Barcoding and Phylogeny of Geographically Widespread Muricids (Gastropoda: Neogastropoda) Along the Coast of China

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The identification and phylogeny of muricids have been in a state of confusion for a long time due to the morphological convergence and plasticity. DNA-based identification and phylogeny methods often offer an analytically powerful addition or even an alternative. In this study, we employ a DNA barcoding method to identify 17 known and easily confused muricid species (120 individuals) from the whole China coast based on mitochondrial cytochrome c oxidase subunit I (COI) and 16S rRNA sequences, and nuclear ITS-1 and 28S rRNA sequences. The phylogeny of muricid subfamilies is also analysed based on all mitochondrial and nuclear sequences. The universal COI and 16S rRNA primers did not work broadly across the study group, necessitating the redesign of muricid specific COI and 16S rRNA primers in this paper. Our study demonstrates that COI gene is a suitable marker for barcoding muricids, which can distinguish all muricid species studied. Phylogenetic analysis of 16S rRNA, ITS-1 and 28S rRNA data also provide good support for the species resolution observed in COI data. The relationships of muricid subfamilies are resolved based on the separate and combined gene data that showed the monophyly of each the subfamilies Ergalataxinae, Rapaninae, Ocenebrinae and Muricinae, especially that Ergalataxinae did not fall within Rapaninae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armbruster GFJ, van Moorsel CHM, Gittenberger E (2000) Conserved sequence patterns in non-coding ribosomal ITS-1 of distantly related snail taxa. J Moll Stud 66:570–573

    Article  Google Scholar 

  • Barco A, Claremont M, Reid DG, Houart R, Bouchet P, Williams ST, Cruaud C, Couloux A, Oliverio M (2010) A molecular phylogenetic framework for the Muricidae, a diverse family of carnivorous gastropods. Mol Phylogenet Evol 56:1025–1039

    Article  PubMed  CAS  Google Scholar 

  • Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491

    Article  CAS  Google Scholar 

  • Brower AVZ (2006) Problems with DNA barcodes for species delimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Syst Biodivers 4:127–132

    Article  Google Scholar 

  • Claremont M, Reid D, Williams ST (2008) A molecular phylogeny of the Rapaninae and Ergalataxinae (Neogastropoda: Muricidae). J Moll Stud 74:215–221

    Article  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  PubMed  CAS  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplication of mitochondrial cytpchrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    PubMed  CAS  Google Scholar 

  • Fujioka Y (1985) Systematic evaluation of radular characters in Thaidinae (Gastropoda: Muricidae). J Sci Hiroshima Univ 31:255–287

    Google Scholar 

  • Grabau AW, King SG (1928) Shells of Peitaiho. Peking, pp 1–279

  • Grossu AV, Lupu D (1964) The presence of Rapana bezoar opposite the Rumanjan Black Sea shores (Muricidae). Arch Moll 93:215–218

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harding JM, Mann R (2005) Veined rapawhelk Rapana venosa range extensions in the Virginia waters of Chesapeake Bay, USA. J Shellfish Res 24:381–385

    Google Scholar 

  • Hassouna N, Michot B, Bachellerie J-P (1984) The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucl Acids Res 12:3563–83

    Article  PubMed  CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlack TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663

    Article  CAS  Google Scholar 

  • Hickerson MJ, Meyer CP, Moritz C (2006) DNA Barcoding will often fail to discover new animal species over broad parameter space. Syst Biol 55:729–739

    Article  PubMed  Google Scholar 

  • Hirase Y (1907) Japanese marine Mollusca. Conch Mag 1:166–175

    Google Scholar 

  • Houart R (2004) Review of the recent species of Morula (Oppomorus), M. (Azumamorula) and M. (Habromorula) (Gastropoda: Muricidae: Ergalataxinae). Novapex 5:91–130

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Jovelin R, Justine JL (2001) Phylogenetic relationships within the Polyopisthocotylean monogeneans (Plathyhelminthes) inferred from partial 28S rDNA sequences. Int J Parasitol 31:393–401

    Article  PubMed  CAS  Google Scholar 

  • Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc B Biol Sci 265:2257–2263

    Article  Google Scholar 

  • Kool SP (1993) Phylogenetic analysis of the Rapaninae (Neogastropoda: Muricidae). Malacologia 35:155–259

    Google Scholar 

  • Linares MC, Soto-Calderón ID, Lees DC, Anthony NM (2009) High mitochondrial diversity in geographically widespread butterflies of Madagascar: a test of the DNA barcoding approach. Mol Phylogen Evol 50:485–495

    Article  CAS  Google Scholar 

  • Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:2229–2238

    CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Palumbi SR (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis D, Moritz C (eds) Molecular systematics. Sinauer, Sunder-land, pp 205–247

    Google Scholar 

  • Ponder WF (1973) The origin and evolution of the Neogastropoda. Malacologia 12:295–338

    PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Remigio EA, Hebert PDN (2003) Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Mol Phylogen Evol 29:641–647

    Article  CAS  Google Scholar 

  • Steinke D, Albrecht C, Pfenninger M (2004) Molecular phylogeny and character evolution in the Western Palaearctic Helicidae s.l. (Gastropoda: Stylommatophora). Mol Phylogen Evol 32:724–734

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tan KS (2000) Species checklist of Muricidae (Mollusca: Gastropoda) in the South China Sea. Raffles Bull Zool 8:495–512

    Google Scholar 

  • Tan KS (2003) Phylogenetic analysis and taxonomy of some southern Australian and New Zealand Muricidae (Mollusca: Neogastropoda). J Nat Hist 37:911–1028

    Article  Google Scholar 

  • Tan KS, Liu L-L (2001) Descriptions of a new species of Thais (Mollusca: Neogastropoda: Muricidae) from Taiwan, based on Morphological and Allozyme analyses. Zool Sci 18:1275–1289

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2002) DNA points the way ahead in taxonomy. Nature 418:479

    Article  PubMed  CAS  Google Scholar 

  • Van Moorsel CHM, van Nees WJ, Mengens HJ (2000) A quick, simple, and inexpensive Mollusc DNA extraction protocol for PCR-based techniques. Malacologia 42:203–206

    Google Scholar 

  • Vermeij GJ (1996) Marine biological diversity: muricid gastropods as a case study. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology. University of Chicago Press, Chicago, pp 355–375

    Google Scholar 

  • Vermeij GJ, Carlson SJ (2000) The muricid gastropod subfamily Rapaninae: phylogeny and ecological history. Paleobiology 26:19–46

    Article  Google Scholar 

  • Winnepenninckx B, Backeljau T, De Wachter R (1993) Extraction of high molecular weight DNA from molluscs. Trends Genet 9:407

    Article  PubMed  CAS  Google Scholar 

  • Yang JM, Zheng XD, Li Q, Wang RC, Song ZL, You BC (2006) Quantitative study on phenotypic genetic diversity of Rapana venosa in China’s coastal waters. Oceanologia et Limnologia Sinica 37:385–392

    Google Scholar 

  • Yokoyama M (1922) Fossils from the upper Musashino of Kazusa and Shimosa. J College Sci Imp Univ Tokyo 44:1–200

    Google Scholar 

  • Zhang FS (1980) Studies on species of Muricidae off the China coasts III. Rapana. Stud Mar Sin 16:113–122

    Google Scholar 

Download references

Acknowledgements

We would like to thank Jun Chen and Qiaozhen Ke for their assistance in the field and in the laboratory. This study was supported by the grants from National High Technology Research and Development Programme (2007AA09Z433), 973 Programme (2010CB126406) and National Natural Science Foundation of China (40906064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Appendix A

Appendix A

Table 2 List of collection reference species used in this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, S., Li, Q. & Kong, L. Multigene Barcoding and Phylogeny of Geographically Widespread Muricids (Gastropoda: Neogastropoda) Along the Coast of China. Mar Biotechnol 14, 21–34 (2012). https://doi.org/10.1007/s10126-011-9384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9384-5

Keywords

Navigation