Skip to main content
Log in

Morphological and Biochemical Alterations of Abalone Testicular Germ Cells and Spawned Sperm and their Fertilizing Ability

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we aimed to detect morphological and biochemical changes in developing germ cells (Gc), testicular sperm (Tsp), and spawned sperm (Ssp) using capacitation-associated characteristics. Gradual changes in the profiles of two membrane proteins, namely NaCl- and detergent-extractable proteins, were observed as compared Gc with Tsp and Tsp with Ssp. These membrane modifications were accomplished mostly through the introduction of new protein sets, both peripheral and integral, into Tsp and Ssp membranes. Activation of serine proteases, particularly in Ssp detergent-extracted proteins with the molecular masses of 38–130 kDa was evident and marked a major difference between Ssp and Tsp. An increase in the level of tyrosine phosphorylation of the proteins ranging from 15 to 20 kDa was noted in Tsp and remained constant in Ssp. Specifically, these three capacitation-associated characteristics could be detected in Ssp, possessing full fertilizing capacity. The lack of an activated proteolytic activity in Tsp resulted in a delayed fertilization, but not affected fertilizing ability. We believe that these characteristics should be advantageous in predicting abalone sperm fertilizing capability, particularly in cases when isolated germ cells or purified Tsp are used in place of spawned sperm in abalone aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adham IM, Nayernia K, Engel W (1997) Spermatozoa lacking acrosin protein show delayed fertilization. Mol Reprod Dev 46:370–376

    Article  PubMed  CAS  Google Scholar 

  • Alfaro J, Munoz N, Vargas M, Komen J (2003) Induction of sperm activation in open and closed thelycum penaeoid shrimps. Aquaculture 216:371–381

    Article  Google Scholar 

  • Apisawetakan S, Sobhon P, Wanichanon C, Linthong V, Kruatrachue M, Upatham ES, Jarayabhand P, Pumthong T, Nugranad J (2000) Ultrastructure of spermatozoa in the testis of Haliotis asinina Linnaeus. J Med Appl Malacol 10:101–109

    Google Scholar 

  • Arboleda CE, Gerton GL (1988) Proacrosin/acrosin during guinea pig spermatogenesis. Dev Biol 125:217–225

    Article  PubMed  CAS  Google Scholar 

  • Asquith KL, Baleato RM, McLaughlin EA, Nixon B, Aitken RJ (2004) Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J Cell Sci 117:3645–3657

    Article  PubMed  CAS  Google Scholar 

  • Ausio J (1999) Histone H1 and evolution of sperm nuclear basic proteins. J Biol Chem 274:31115–31118

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Azuma S, Kashiwabara S, Toyada Y (1994) Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J Biol Chem 269(50):31845–31849

    PubMed  CAS  Google Scholar 

  • Balhorn R, Cosman M, Thornton K, Krishnan VV, Corzett M, Bench G, Kramer C, Lee JD IV, Hud NV, Allen MJ, Prieto M, Meyer-Iese W, Brown JT, Kirz J, Zhang X, Bradbury EM, Maki G, Braun RE, Breed W (1999) Protamine mediated condensation of DNA in mammalian sperm. In: Gagnon C (ed) The male gamete: from basic science to clinical applications. Cache River Press, Vienna IL, pp 55–70

    Google Scholar 

  • Barros C, Capote C, Perez C, Crosby JA, Becker MI, De Ioannes A (1992) Immunodetection of acrosin during the acrosome reaction of hamster, guinea-pig and human spermatozoa. Biol Res 25:31–40

    PubMed  CAS  Google Scholar 

  • Bedford JM (1983) Significance of the need for sperm capacitation before fertilization in eutherian mammal. Biol Reprod 28:108–120

    Article  PubMed  CAS  Google Scholar 

  • Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Dusenbury DB (2000) Selection for high gamete encounter rates explains the success of male and female mating types. J Theor Biol 202:1–10

    Article  Google Scholar 

  • Encena VC II, Capinpin EC Jr, Bayona NC (1998) Optimal sperm concentration and time for fertilization of the tropical abalone, Haliotis asinina Linné 1758. Aquaculture 165:347–352

    Article  Google Scholar 

  • Foster JA, Friday BB, Maulit MT, Blobel C, Winfrey VP, Olson GE, Kim KS, Gerton GL (1997) AM67, a secretory component of the guinea pig sperm acrosomal matrix, is related to mouse sperm protein sp56 and the complement component 4-binding proteins. J Biol Chem 272:12714–12722

    Article  PubMed  CAS  Google Scholar 

  • Franzen A (1983) Ultrastructural studies of spermatozoa in three bivalve species with notes on evolution of elongated sperm nucleus in primitive spermatozoa. Gamete Res 7:199–214

    Article  Google Scholar 

  • Gardner C, Williams H (2002) Maturation in the male giant crab, Pseudocarcinus gigas, and the potential for sperm limitation in the Tasmanian fishery. Mar Freshwater Res 53:661–667

    Article  Google Scholar 

  • Giese AC, Kanatani H (1987) Maturation and spawning. In: Giese AC, Pearse JS, Pearse VB (eds) Reproductive Biology of Invertebrates. Boxwood Press, Pacific Grove, CA, pp 251–329

    Google Scholar 

  • Griffin FJ, Clark WH Jr (1990) Induction of acrosomal filament formation in the sperm of Sicyonia ingentis. J Exp Zool 254:296–304

    Article  CAS  Google Scholar 

  • Grubert MA, Mundy CN, Ritar AJ (2005) The effects of sperm density and gamete contact time on the fertilization success of blacklip (Haliotis rubra; Leach, 1814) and greenlip (H. laevigata; Donovan, 1808) abalone. J Shellfish Res 24:407–413

    Google Scholar 

  • Kim KS, Gerton GL (2003) Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse sperm. Dev Biol 264(1):141–152

    Article  PubMed  CAS  Google Scholar 

  • Krapf D, Visconti PE, Arranz SE, Cabada MO (2007) Egg water from the amphibian Bufo arenarum induces capacitation-like changes in homologous spermatozoa. Dev Biol 306:516–524

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Levitan DR, Sewell MA, Chia FS (1991) Kinetics of fertilization in the sea urchin Strongylocentrotus franciscanus: interaction of gamete dilution, age, and contact time. Biol Bull 181:371–378

    Article  Google Scholar 

  • Lindsay LL, Clark WH Jr (1992) Preloading of micromolar intracellular Ca2+ during capacitation of Sicyonia ingentis sperm, and the role of the pHi decrease during the acrosome reaction. J Exp Zool 262:219–229

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Heasman M, Simpson R (2004) Evaluation of cytochalasin B (CB) treatments for triploidy induction in the blacklip abalone, Haliotis rubra. Aquaculture Res 35:1062–1075

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mastro R, Hall M (1999) Protein delipidation and precipitation by tri-n-butylphosphate, acetone, and methanol treatment for isoelectric focusing and two-dimensional gel electrophoresis. Anal Biochem 273:313–315

    Article  PubMed  CAS  Google Scholar 

  • Meidel SK, Yund PO (2001) Egg longevity and time-integrated fertilization in a temperate sea urchin (Strongylocentrotus droebachiensis). Biol Bull 201(1):84–94

    Article  PubMed  CAS  Google Scholar 

  • Nayernia K, Adham IM, Shamsadin R, Müller C, Sancken U, Engel W (2002) Proacrosin-deficient mice and zona pellucida modifications in an experimental model of multifactorial infertility. Mol Hum Reprod 8:434–440

    Article  PubMed  CAS  Google Scholar 

  • Naz RK, Rajesh PB (2004) Role of tyrosine phosphorylation in sperm capacitatation/acrosome reaction. Reprod Biol Endocinol 2:75

    Article  CAS  Google Scholar 

  • Pasten C, Morales P, Kong M (2005) Role of the sperm proteasome during fertilization and gamete interaction in the mouse. Mol Reprod Dev 71:209–219

    Article  PubMed  CAS  Google Scholar 

  • Rios M, Barros C (1997) Trypsin-like enzymes during fertilization in the shrimp Rhynchocinetes typus. Mol Reprod Dev 46:581–586

    Article  PubMed  CAS  Google Scholar 

  • Septo NK, Cook PA (1998) Induction of triploidy in the South African abalone using cytochalasin B. Aquaculture Int 6:161–169

    Article  Google Scholar 

  • Suphamungmee W, Apisawetakan S, Weerachatyanukul W, Wanichanon C, Sretarugsa P, Poomtong T, Sobhon P (2005) Basic nuclear protein pattern and chromatin condensation in the male germ cells of a tropical abalone, Haliotis asinina. Mol Reprod Dev 70:211–221

    Article  PubMed  CAS  Google Scholar 

  • Vanichviriyakit R, Kruevaisayawan H, Weerachatyanukul W, Tawipreeda P, Withyachumnarnkul B, Pratoomchat B, Chavadej J, Sobhon P (2004) Molecular modification of Penaeus monodon sperm in female thelycum and its consequent responses. Mol Reprod Dev 69:356–363

    Article  PubMed  CAS  Google Scholar 

  • Visconti PE, Kopf GS (1998) Regulation of protein phosphorylation during sperm capacitation. Biol Reprod 59:1–6

    Article  PubMed  CAS  Google Scholar 

  • Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill JD (eds) Physiology of reproduction. 2nd edn. Raven, NY, pp 189–317

    Google Scholar 

  • Yi JH, Lefievre L, Gagnon C, Anctil M, Dube F (2002) Increase of cAMP upon release from prophase arrest in surf clam oocytes. J Cell Sci 115:311–320

    PubMed  CAS  Google Scholar 

  • Yund PO (2000) How severe is sperm limitation in natural populations of marine free-spawners? Trends Ecol Evol 15(1):10–13

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Thailand Research Fund (to PS and WW and Royal Golden Jubilee Ph.D. Scholarship Program to WS) and Mahidol University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wattana Weerachatyanukul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suphamungmee, W., Weerachatyanukul, W., Poomtong, T. et al. Morphological and Biochemical Alterations of Abalone Testicular Germ Cells and Spawned Sperm and their Fertilizing Ability. Mar Biotechnol 10, 593–601 (2008). https://doi.org/10.1007/s10126-008-9097-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9097-6

Keywords

Navigation