Skip to main content
Log in

Structure of Amylase Genes in Populations of Pacific Cupped Oyster (Crassostrea gigas): Tissue Expression and Allelic Polymorphism

Marine Biotechnology Aims and scope Submit manuscript

Abstract

Using the previously determined complementary DNA Sequence of Crassostrea gigas amylase (Y08370), we designed several oligonucleotide primers and used them with polymerase chain reaction (PCR) technology to characterize oyster amylase gene sequences. Two genes encoding 2 different amylases were characterized and sequenced. The 2 genes are similarly organized with 8 exons and 7 introns. Intron insertions are found at the same location in the 2 genes. Sizes and nucleotide sequences are different for the different introns inside each gene and different for the corresponding introns in the 2 genes. Comparing the 2 genes, around 10% of the nucleotides are different along the exons, and comparing the 2 deduced protein sequences, a mean value of 10.4% of amino acids are changed. Genes A and B encode mature proteins of, respectively, 500 and 499 amino acids, which present 94% similarity. A microsatellite (TC37) that constitutes the largest part of intron 4 of gene A has been used as a polymorphic marker. A method consisting of a PCR step followed by EcoRI digestion of the obtained fragments was used to observe polymorphism in these 2 genes. Six and 4 alleles for genes A and B, respectively, have been sequenced, leading to a maximum of 2.9% base change. The 2 genes are ubiquitously expressed in the different digestive tissues with quantitative differences. Gene A is strongly expressed in the digestive gland and at a lower level in stomach, while gene B is preferentially expressed in the labial palps. The microsatellite repeat was used in the analysis of 4 populations of Crassostrea gigas from the French Atlantic coast. A high level of polymorphism observed with 30 different alleles of gene A inside the populations should allow their characterization using the mean value of the microsatellite allelic distribution. These populations showed a low level of differentiation (F st between 0 and 0.011); however, the population of Bonne Anse appeared to be distinguished from the other populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. S.G. Andersson A. Zomorodipour J.O. Andersson T. Sicheritz-Ponten U.C. Alsmark R.M. Podowski A.K. Naslund A.A.S. Eriksson H.H. Winkler C.G. Kurland (1998) ArticleTitleThe genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 12 133–140

    Google Scholar 

  2. K. Belkir P. Borsa J. Goudet L. Chikhi F. Bonhomme (1996) Genetix, logiciel sous windows TM pour la génétique des populations. Laboratoire Génome et Populations, CNRS UPR 9060, Université de Montpellier II. Montpellier, France

    Google Scholar 

  3. P.M. Boer D.A. Hickey (1986) ArticleTitleThe alpha-amylase gene in Drosophila melanogaster: nucleotide sequence, gene structure and expression motifs. Nucleic Acids Res 14 8399–8411 Occurrence Handle1:CAS:528:DyaL2sXmt1SitA%3D%3D Occurrence Handle3024105

    CAS  PubMed  Google Scholar 

  4. M.L. Cariou J.L. Da Lage (1993) Isozymes polymorphisms. Y.N. Tobari (Eds) Drosophila ananassae, Genetical and Biological Aspects. Japan Scientific Societies Press Tokyo 160–171

    Google Scholar 

  5. J.I. Choi T. Yamazaki (1994) ArticleTitleMolecular analysis of cis-regulatory sequences of the α-amylase gene in D. melanogaster: a short 5′-flanking region of Amy distal gene is required for full expression of Amy proximal gene. Jpn J Genet 69 619–635 Occurrence Handle1:CAS:528:DyaK2MXks1Smsbc%3D Occurrence Handle7857669

    CAS  PubMed  Google Scholar 

  6. O. Dainou M.L. Cariou J.M. Goux J.R. David (1993) ArticleTitleAmylase polymorphism in Drosophila melanogaster: haplotype frequencies in tropical African and American populations. Genet Selection Evol 25 133–155 Occurrence Handle1:CAS:528:DyaK3sXkvFWksLw%3D

    CAS  Google Scholar 

  7. J.L. Da Lage F. Lemeunier M.L. Cariou J.R. David (1992) ArticleTitleMultiple amylase genes in Drosophila ananassae and related species. Genet Res Camb 59 85–92 Occurrence Handle1:CAS:528:DyaK38Xls1yjsbg%3D

    CAS  Google Scholar 

  8. J.L. Da Lage A. Klarenberg M.L. Cariou (1996) ArticleTitleVariation in sex-, stage- and tissue-specific expression of the amylase genes in Drosophila ananassae. Heredity 76 9–18 Occurrence Handle1:CAS:528:DyaK28XhtFyltbg%3D Occurrence Handle8575934

    CAS  PubMed  Google Scholar 

  9. J.L. Da Lage A. Van Wormhoudt M.L. Cariou (2001) ArticleTitleDiversity and evolution of α-amylase genes in animals. Biologia Bratislava 57 IssueID11

    Google Scholar 

  10. FAO (1999). Year book of fisheries statistics. World aquaculture production 88(2):178 p.

    Google Scholar 

  11. S.E. Douglas S. Mandla J.W. Gallant (2000) ArticleTitleMolecular analysis of the amylase gene and its expression during development in the winter flounder, Pleuronectes americanus. Aquaculture 190 247–260 Occurrence Handle1:CAS:528:DC%2BD3cXls1Crtro%3D

    CAS  Google Scholar 

  12. G.L. Grossman A.A. James (1993) ArticleTitleThe salivary gland of the vector mosquito, Aedes aegypti; expressed a novel member of the amylase gene family. Insect Mol Biol 1 223–232 Occurrence Handle1:CAS:528:DyaK2cXntVCkuw%3D%3D Occurrence Handle7505701

    CAS  PubMed  Google Scholar 

  13. G.L. Grossman Y. Campos D.W. Severson A.A. James (1997) ArticleTitleEvidence for two distinct members of the amylase gene family in the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 27 769–781 Occurrence Handle1:CAS:528:DyaK1cXktlWksg%3D%3D

    CAS  Google Scholar 

  14. D.L. Gumucio K. Wiebauer R.M. Caldwell L.C. Samuelson M.H. Meisler (1988) ArticleTitleConcerted evolution of human amylase genes. Mol Cell Biol 8 1197–1205 Occurrence Handle1:CAS:528:DyaL1cXhsVCmurc%3D Occurrence Handle2452973

    CAS  PubMed  Google Scholar 

  15. O. Hagenbuchle R. Bovery R.A. Young (1980) ArticleTitleTissue-specific expression of mouse α-amylase genes: nucleotide sequence of isoenzyme mRNAs from pancreas and salivary gland. Cell 21 179–187 Occurrence Handle1:CAS:528:DyaL3cXlvF2nsLk%3D Occurrence Handle6157477

    CAS  PubMed  Google Scholar 

  16. M.M. Hansen K.L.D. Mensberg S. Berg (1999) ArticleTitlePostglacial recolonization patterns and genetic relationships among whitefish (Coregonus sp.) populations in Denmark, inferred from mitochondrial DNA and microsatellite markers. Mol Ecol 8 IssueID2 239–252 Occurrence Handle1:CAS:528:DyaK1MXjtVOgu7o%3D

    CAS  Google Scholar 

  17. M. Henry N. Benlimane E. Boucaud-Camou M. Mathieu A. Donval A. Van Wormhoudt (1993) ArticleTitleThe amylase secreting cells of the stomach of the scallop, Pecten maximus, ultrastructural, immunohistochemical and immunocytochemical characterizations. Tissue Cell 25 537–548 Occurrence Handle1:CAS:528:DyaK2cXhsF2hs7w%3D

    CAS  Google Scholar 

  18. M. Héral (1989) ArticleTitleTraditional oyster culture in France. Aquaculture 1 342–387

    Google Scholar 

  19. A. Huvet S. Lapègue A. Magoulas P. Boudry (2000) ArticleTitleMitochondrial and nuclear DNA phylogeography of Crassostrea angulata, the Portuguese oyster endangered in Europe. Conservation Genet 1 IssueID3 251–262 Occurrence Handle1:CAS:528:DC%2BD3MXkslSmsbk%3D

    CAS  Google Scholar 

  20. N. Inomata T. Yamazaki (2000) ArticleTitleEvolution of nucleotide substitutions and gene regulation in the amylase multigenes in Drosophila kikkawai and its sibling species. Mol Biol Evol 17 IssueID4 601–615 Occurrence Handle1:CAS:528:DC%2BD3cXisVSgtL8%3D Occurrence Handle10742051

    CAS  PubMed  Google Scholar 

  21. S. Le Moine D. Sellos J. Moal J.Y. Daniel F. San Juan Serrano J.F. Samain A. Van Wormhoudt (1997) ArticleTitleAmylase in Pecten maximus (Mollusca, bivalves): protein and cDNA characterization; quantification of the expression in the digestive gland. Mol Mar Biol Biotechnol 6 IssueID3 228–237 Occurrence Handle1:CAS:528:DyaK2sXlvFSjsLc%3D Occurrence Handle9284561

    CAS  PubMed  Google Scholar 

  22. J. Moal J.Y. Daniel D.Y. Sellos A. Van Wormhoudt J.F. Samain (2000) ArticleTitleAmylase mRNA expression in Crassostrea gigas during feeding cycles. J Comp Physiol B 170 21–26 Occurrence Handle1:CAS:528:DC%2BD3cXitVOjsb8%3D Occurrence Handle10707321

    CAS  PubMed  Google Scholar 

  23. Y. Nakamura M. Ogama T. Nishida M. Emi G. Kosaki S. Himeno K. Matsubara (1984) ArticleTitleSequence of cDNAs for human salivary and pancreatic α-amylases. Gene 28 263–270 Occurrence Handle10.1016/0378-1119(84)90265-8 Occurrence Handle1:STN:280:BiuB3sjlvVQ%3D Occurrence Handle6610603

    Article  CAS  PubMed  Google Scholar 

  24. K.S. Park J.I. Song B.L. Choe S.J. Kim (1999) ArticleTitleAmylase polymorphism of Littorina brevicula from polluted and unpolluted sites, Korea BULL. Environ. Contamination Toxicol 63 633–638 Occurrence Handle1:CAS:528:DyaK1MXns1yls70%3D

    CAS  Google Scholar 

  25. A.C. Pittet U. Schibler (1985) ArticleTitleMouse α-amylase loci; AMY-1 and AMY-2, are closely linked. J Mol Biol 182 359–365 Occurrence Handle2989529

    PubMed  Google Scholar 

  26. T. Renault N. Cochennec (1994) ArticleTitle Rickettsia-like organisms in the cytoplasm of gill epithelial cells of the Pacific oyster. J Invertebrate Pathol 64 IssueID2 160–162

    Google Scholar 

  27. K.W. Rodenburg N. Juge X.J. Guo M. Sogaard J.C. Chaix B. Svensson (1994) ArticleTitleDomain protruding at the third β strand of the α/β barrel in barley α-amylase confers distinct isozyme-specific properties. Eur J Biochem 221 277–284 Occurrence Handle8168517

    PubMed  Google Scholar 

  28. H. Shibata T. Yamazaki (1995) ArticleTitleMolecular evolution of the duplicated Amy locus in the Drosophila melanogaster species subgroup: concerted evolution only in the coding region and an excess of nonsynonymous substitutions in speciation. Genetics 141 223–236 Occurrence Handle1:CAS:528:DyaK28Xht1CmtrY%3D Occurrence Handle8536970

    CAS  PubMed  Google Scholar 

  29. S.M. Singh R.R. Green (1984) ArticleTitleExcess of allozyme homozygoty in marine molluscs and its possible biological significance. Malacologia 25 569–581

    Google Scholar 

  30. M.E. Unger G. Roesijadi (1993) ArticleTitleSensitive assay for molluscan metallothionein induction based on ribonuclease protection and molecular titration of metallothionein and actin mRNAs. Mol Mar Biol Biotechnol 2 IssueID5 319–324 Occurrence Handle1:CAS:528:DyaK2cXmsVOhtL4%3D Occurrence Handle8180632

    CAS  PubMed  Google Scholar 

  31. A. Van Wormhoudt D. Sellos (1996) ArticleTitleCloning and sequencing analysis of three amylase cDNAs in the shrimp Penaeus vannamei (Crustacea Decapoda), evolutionary aspects. J Mol Evol 42 543–551 Occurrence Handle1:CAS:528:DyaK28XjvVajs7Y%3D Occurrence Handle8661999

    CAS  PubMed  Google Scholar 

  32. B.S. Weir C.C. Cockerham (1984) ArticleTitleEstimating F-statistics for the analysis of population structure. Evolution 38 1358–1370

    Google Scholar 

  33. S. Wright (1951) ArticleTitleThe genetical structure of populations. Annals of eugenics 15 323–354

    Google Scholar 

  34. B. Xu J.-J. Janson D. Sellos (2001) ArticleTitleCloning and sequencing of a molluscan endo-B-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur J Biochem 268 3718–3727 Occurrence Handle11432738

    PubMed  Google Scholar 

  35. E. Zouros D.W. Foltz (1984) ArticleTitleMinimal selection requirements for the correlation between heterozygoty and growth, and for the deficiency of heterozygotes, in oyster populations. Dev Genet 4 393–405

    Google Scholar 

Download references

Acknowledgements

This study was supported by financial grants from IFREMER and from the Conseil Régional Bretagne and Pays de la Loire (PR Physiologie and GENEPHYS programme), and the Conseil Régional de Bretagne and the Conseil Général du Finistére provided financial support for sequencing equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sellos.

Appendix

Appendix

Note: The novel nucleotide sequences reported here have been submitted to the EMBL Nucleotide Sequences Database and have been allocated the following accession numbers: AF320688, AF367494, ALIGN_000427 (gene A), and ALIGN_000428 (gene B).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sellos, D., Moal, J., Degremont, L. et al. Structure of Amylase Genes in Populations of Pacific Cupped Oyster (Crassostrea gigas): Tissue Expression and Allelic Polymorphism . Mar. Biotechnol. 5, 360–372 (2003). https://doi.org/10.1007/s10126-002-0089-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-002-0089-7

Keywords

Navigation