Skip to main content

Advertisement

Log in

Uropathogenic bacteria and deductive genomics towards antimicrobial resistance, virulence, and potential drug targets

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Urinary tract infections (UTIs) are among the most prevalent bacterial infections affecting people in inpatient and outpatient settings. The current study aimed to sequence the genome of uropathogenic Escherichia coli strain CUI-B1 resourced from a woman having uncomplicated cystitis and pyelonephritis. Followed by deductive genomics towards potential drug targets using E. coli strain CUI-B1, strain O25b: H4-ST131, Proteus mirabilis strain HI4320, Klebsiella pneumoniae strain 1721, and Staphylococcus saprophyticus strain ATCC 15305 uropathogenic strains. Comparative genome analysis revealed that genes related to the survival of E. coli, P. mirabilis, K. pneumoniae, and S. saprophyticus, such as genes of metal-requiring proteins, defense-associated genes, and genes associated with general physiology, were found to be highly conserved in the genomes including strain CUI-B1. However, the genes responsible for virulence and drug resistance, mainly those that are involved in bacterial secretion, fimbriae, adherence, and colonization, were found in various genomic regions and varied from one species to another or within the same species. Based on the genome sequence, virulence, and antimicrobial-resistant gene dataset, the subtractive proteomics approach revealed 22 proteins mapped to the pathogen’s unique pathways and among them, entB, clbH, chuV, and ybtS were supposed to be potential drug targets and the single drug could be utilized for all above-mentioned strains. These results may provide the foundation for the optimal target for future discovery of drugs for E. coli-, P. mirabilis-, K. pneumoniae-, and S. saprophyticus-based infections and could be investigated further to employ in personalized drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The 16s RNA sequence data was submitted to GenBank/DDBJ/ENA under accession no. OQ858381, while the Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JARWMK000000000. The version described in this paper is version JARWMK010000000.

References

  • Adamus-Bialek A, Zajac E, Parniewski P, Kaca W (2013) Comparison of antibiotic resistance patterns in collections of Escherichia coli and Proteus mirabilis uropathogenic strains. Mol Biol Rep 40:3429–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alikhan NF, Petty NK, Ben Zakour NL et al (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cals JW, Ebell MH (2018) C-reactive protein: guiding antibiotic prescribing decisions at the point of care. Br J Gen Pract 668:112–113

    Article  Google Scholar 

  • Caza M, Kronstad JW (2013) Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol 19(3):80

    Google Scholar 

  • Cepas V, Soto SM (2020) Relationship between virulence and resistance among Gram-negative bacteria. Antibiotics 9:719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelis P, Dingemans J (2013) Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 14(3):75

    Google Scholar 

  • Daubin V, Moran NA, Ochman H (2003) Phylogenetics and the cohesion of bacterial genomes. Science 301:829–832

    Article  CAS  PubMed  Google Scholar 

  • Ehsan N, Ahmad S, Navid A, Azam SS (2018) Identification of potential antibiotic targets in the proteome of multi-drug resistant Proteus mirabilis. Meta Gene 18:167–173

    Article  Google Scholar 

  • Feng A, Akter S, Leigh SA et al (2023) Genomic diversity, pathogenicity and antimicrobial resistance of Escherichia coli isolated from poultry in the southern United States. BMC Microbiol 23:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Mireles A, Walker J, Caparon M et al (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasteiger E et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Springer Protocols Handbooks, Humana Press

    Google Scholar 

  • Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181–W184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ (2012) Host–pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 3:616–648

    Article  Google Scholar 

  • Hatt J, Rather P (2008) Role of bacterial biofilms in urinary tract infections. Curr Top Microbiol Immunol 322:163–192

    CAS  PubMed  Google Scholar 

  • Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) Bergey’s manual of determinate bacteriology. Lippincott Williams & Wilkins, Baltimore, Maryland, USA

    Google Scholar 

  • Kahlmeter G (2003) An international survey of the antimicrobial susceptibility of pathogens from uncomplicated urinary tract infections: the ECO· SENS Project. J Antimicrob Chemother 51:69–76

    Article  CAS  PubMed  Google Scholar 

  • Kathayat D, Lokesh D, Ranjit S, Rajashekara G (2021) Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathogens 10:467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lee T, Kim TH (2012) An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: evidence for candidate genes on human chromosome 2. BMC Genomics 13:711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein RD, Hultgren SJ (2020) Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nat Rev Microbiol 18:211–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles J, Gromo G (2003) Target selection in drug discovery. Nat Rev Drug Discov 2:63–69

    Article  CAS  PubMed  Google Scholar 

  • Kostakioti M, Hultgren SJ, Hadjifrangiskou M (2012) Molecular blueprint of uropathogenic Escherichia coli virulence provides clues toward the development of anti-virulence therapeutics. Virulence 3:592–594

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurbasic A, Jakobsen L, Skjøt-Rasmussen L (2010) Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infect Kuskowski ion. Foodborne Pathog Dis 7:537–547

    Article  PubMed  Google Scholar 

  • Meng-Ze D, Changjiang Z, Huan W, Shuo L, Wen W, Feng-Bia F (2018) The GC content as a main factor shaping the amino acid usage during bacterial evolution process. Front Microbiol 9:2948

    Article  Google Scholar 

  • Moriya Y, Itoh M, Okuda M, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:182–185

    Article  Google Scholar 

  • Nairz M, Weiss G (2020) Iron in infection and immunity. Mol Asp Med 75:100864

    Article  CAS  Google Scholar 

  • Naz A, Awan FM, Obaid A, Muhammad SA, Paracha RZ, Ahmad J, Ali A (2015) Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: a reverse vaccinology-based approach. Infect Genet Evol 32:280–291

    Article  CAS  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  CAS  PubMed  Google Scholar 

  • Paniagua-Contreras GL, Monroy-Pérez E, Díaz-Velásquez CE, Uribe-García A, Labastida A, Peñaloza-Figueroa F et al (2019) Whole-genome sequence analysis of multidrug-resistant uropathogenic strains of Escherichia coli from Mexico. Infect Drug Resist 12:2363–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelling H, Nzakizwanayo J, Milo S, Denham EL, MacFarlane WM, Bock LJ et al (2019) Bacterial biofilm formation on indwelling urethral catheters. Lett Appl Microbiol 68:277–293

    Article  CAS  PubMed  Google Scholar 

  • Pessi G, Williams F, Hindle Z, Heurlier K, Holden MT, Cámara M, Haas D et al (2001) The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol 184(335):6676–6683

    Article  Google Scholar 

  • Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4:482–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rihtar E, Žgur Bertok D, Podlesek Z (2020) The uropathogenic specific protein gene usp from Escherichia coli and Salmonella bongori is a novel member of the TyrR and H-NS regulons. Microorganisms 8:330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanober G, Ahmad S, Azam SS (2017) Identification of plausible drug targets by investigating the druggable genome of MDR Staphylococcus epidermidis. Gene Report 7:147–153

    Article  Google Scholar 

  • Saraf VS, Bhatti T, Javed S, Bokhari H (2022) Antimicrobial resistance pattern in E. coli isolated from placental tissues of pregnant women in low-socioeconomic setting of Pakistan. Curr Microbiol 79:83

    Article  CAS  PubMed  Google Scholar 

  • Shaeriya F, Al Remawy R, Makhdoom A, Alghamdi A, Shaheen M, FA. (2021) Purple urine bag syndrome. Saudi J Kidney Dis Transpl 32:530–531

    Article  PubMed  Google Scholar 

  • Shah C, Baral R, Bartaula B et al (2019) Virulence factors of uropathogenic Escherichia coli (UPEC) and correlation with antimicrobial resistance. BMC Microbiol 19:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Shruthi N, Kumar R, Kumar R (2012) Phenotypic study of virulence factors in Escherichia coli isolated from antenatal cases, catheterized patients, and faecal flora. J Clin Diagn Res 6:1699–1703

    Google Scholar 

  • Smelov V, Naber K, Johansen TEB (2016) Improved classification of urinary tract infection: future considerations. Eur Urol Suppl 15:71–80

    Article  Google Scholar 

  • Solanki V, Tiwari V (2018) Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci Rep 8:9044

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasan VB, Rajamohan G (2013) KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 57(9):4449–4462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamm WE, Norrby SR (2001) Urinary tract infections: disease panorama and challenges. J Infect Dis 183:S1–S4

    Article  PubMed  Google Scholar 

  • Stickler DJ (2008) Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pract Urol 5:598–608

    Article  CAS  PubMed  Google Scholar 

  • Subashchandrabose S, Hazen TH, Brumbaugh AR, Himpsl SD, Smith SN, Ernst RD, Rasko DA et al (2014) Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc Natl Acad Sci 111:18327–18332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabasi M, Asadi Karam MR, Habibi M, Yekaninejad MS, Bouzari S (2015) Phenotypic assays to determine virulence factors of uropathogenic Escherichia coli isolates and their correlation with antibiotic resistance pattern. Osong Public Health Res Perspect 6:261–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Uddin R, Saeed K, Khan W, Azam SS, Wadood A (2015) Metabolic pathway analysis approach: identification of novel therapeutic target against methicillin resistant Staphylococcus aureus. Gene 556:213–226

    Article  CAS  PubMed  Google Scholar 

  • Yu NY, Wagner JR, Laird MR, Melli G et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Researchers Supporting Project number (RSP2023R332), King Saud University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

AA, RN, and AI collected samples, performed basics analysis, and wrote 1st relevant 1st draft. AH, WBA, AH, and IF performed and guided bioinformatics analysis. ZMZR wrote the “Discussion” section and proof reading. MI supervised whole work and drafted the manuscript for final submission.

Corresponding author

Correspondence to Muhammad Ibrahim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 15 kb)

ESM 2

(XLSX 10 kb)

ESM 3

(XLSX 39 kb)

ESM 4

(XLSX 12 kb)

ESM 5

(XLSX 11 kb)

ESM 6

(XLSX 11 kb)

ESM 7

(XLSX 10 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, A., Noureen, R., Iftikhar, A. et al. Uropathogenic bacteria and deductive genomics towards antimicrobial resistance, virulence, and potential drug targets. Int Microbiol 27, 325–335 (2024). https://doi.org/10.1007/s10123-023-00416-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-023-00416-3

Keywords

Navigation