Skip to main content

Advertisement

Log in

Comparative genomics of Brucella abortus and Brucella melitensis unravels the gene sharing, virulence factors and SNP diversity among the standard, vaccine and field strains

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Brucella abortus and Brucella melitensis are the primary etiological agents of brucellosis in large and small ruminants, respectively. There are limited comparative genomic studies involving Brucella strains that explore the relatedness among both species. In this study, we involved strains (n=44) representing standard, vaccine and Indian field origin for pangenome, single nucleotide polymorphism (SNP) and phylogenetic analysis. Both species shared a common gene pool representing 2884 genes out of a total 3244 genes. SNP-based phylogenetic analysis indicated higher SNP diversity among B. melitensis (3824) strains in comparison to B. abortus (540) strains, and a clear demarcation was identified between standard/vaccine and field strains. The analysis for virulence genes revealed that virB3, virB7, ricA, virB5, ipx5, wbkC, wbkB, and acpXL genes were highly conserved in most of the Brucella strains. Interestingly, virB10 gene was found to have high variability among the B. abortus strains. The cgMLST analysis revealed distinct sequence types for the standard/vaccine and field strains. B. abortus strains from north-eastern India fall within similar sequence type differing from other strains. In conclusion, the analysis revealed a highly shared core genome among two Brucella species. SNP analysis revealed B. melitensis strains exhibit high diversity as compared to B. abortus strains. Strains with absence or high polymorphism of virulence genes can be exploited for the development of novel vaccine candidates effective against both B. abortus and B. melitensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Glil MY, Thomas P, Brandt C, Melzer F, Subbaiyan A, Chaudhuri P, Harmsen D, Jolley KA, Janowicz A, Garofolo G, Neubauer H (2022) Core genome multilocus sequence typing scheme for improved characterization and epidemiological surveillance of pathogenic Brucella. J Clin Microbiol 60(8):e00311–e00322

    Article  PubMed  PubMed Central  Google Scholar 

  • Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen ALV, Cheng AA, Liu S, Min SY (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48(D1):D517–D525

    CAS  PubMed  Google Scholar 

  • Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC genomics 12(1):1–10

    Article  Google Scholar 

  • Azam S, Rao SB, Jakka P, NarasimhaRao V, Bhargavi B, Gupta VK, Radhakrishnan G (2016) Genetic characterization and comparative genome analysis of Brucella melitensis Isolates from India. Int J Genom  2016:3034756. https://doi.org/10.1155/2016/3034756

  • Bengtsson RJ, Simpkin AJ, Pulford CV, Low R, Rasko DA, Rigden DJ, Hall N, Barry EM, Tennant SM, Baker KS (2022) Pathogenomic analyses of Shigella isolates inform factors limiting shigellosis prevention and control across LMICs. Nat Microbiol 7(2):251–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertelli C, Laird MR, Williams KP, Simon Fraser University Research Computing Group, Lau BY, Hoad G, Winsor GL, Brinkman FS (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45(W1):W30–W35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogaards JA, Van Der Weele P, Woestenberg PJ, Van Benthem BH, King AJ (2019) Bivalent human papillomavirus (HPV) vaccine effectiveness correlates with phylogenetic distance from HPV vaccine types 16 and 18. J Infect Dis 220(7):1141–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri P, Goswami TTK, Lalsiamthara J, Kaur G, Vishnu US, Sankarasubramanian J, Gunasekaran P, Rajendhran J (2015) Draft genome sequence of the intermediate rough vaccine strain Brucella abortus S19Δ per mutant. Genome Announc 3(6):e01336–e01315

    Article  PubMed  PubMed Central  Google Scholar 

  • Cloeckaert A, Grayon M, Verger JM, Letesson JJ, Godfroid F (2000) Conservation of seven genes involved in the biosynthesis of the lipopolysaccharide O-side chain in Brucella spp. Res Microbiol 151(3):209–216

    Article  CAS  PubMed  Google Scholar 

  • Crasta OR, Folkerts O, Fei Z, Mane SP, Evans C, Martino-Catt S, Bricker B, Yu G, Du L, Sobral BW (2008) Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes. PLoS One 3(5):e2193

    Article  PubMed  PubMed Central  Google Scholar 

  • De Barsy M, Jamet A, Filopon D, Nicolas C, Laloux G, Rual JF, Muller A, Twizere JC, Nkengfac B, Vandenhaute J, Hill DE (2011) Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol 13(7):1044–1058

    Article  PubMed  Google Scholar 

  • El-Sayed A, Awad W (2018) Brucellosis: Evolution and expected comeback. Int J Vet Sci Med 6(sup1):S31–S35

    Article  PubMed  PubMed Central  Google Scholar 

  • Etemady A, Mohammdi M, Esmaelizad M, Alamian S, Vahedi F, Aghaeipour K, Behrozikhah AM, Faghihloo E, Afshar D, Firuzyar S, Rahimi A (2015) Genetic characterization of the wboA gene from the predominant biovars of Brucella isolates in Iran Electron Physician 7(6):1381

    PubMed  PubMed Central  Google Scholar 

  • Foster JT, Beckstrom-Sternberg SM, Pearson T, Beckstrom-Sternberg JS, Chain PS, Roberto FF, Hnath J, Brettin T, Keim P (2009) Whole-genome-based phylogeny and divergence of the genus Brucella. J Bacteriol 191(8):2864–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner SN, Slezak T, Hall BG (2015) kSNP3. 0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics 31(17):2877–2878

    Article  CAS  PubMed  Google Scholar 

  • Godfroid F, Cloeckaert A, Taminiau B, Danese I, Tibor A, De Bolle X, Mertens P, Letesson JJ (2000) Genetic organisation of the lipopolysaccharide O-antigen biosynthesis region of Brucella melitensis 16M (wbk). Res Microbiol 151(8):655–668

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Verri C, Suárez-Esquivel M, Chaves Olarte E and Moreno E (2020) Brucella genomics: macro and micro evolution

    Google Scholar 

  • Halling SM, Peterson-Burch BD, Bricker BJ, Zuerner RL, Qing Z, Li LL, Kapur V, Alt DP, Olsen SC (2005) Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol 187(8):2715–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurtado R, Maturrano L, Azevedo V, Aburjaile F (2020) Pathogenomics insights for understanding Pasteurella multocida adaptation. Int J Med Microbiol 310(4):151417

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Scornavacca C (2012) Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 61(6):1061–1067

    Article  PubMed  Google Scholar 

  • Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 3:124. https://doi.org/10.12688/wellcomeopenres.14826.1

  • Karthik K, Anbazhagan S, Thomas P, Ananda Chitra M, Senthilkumar TMA, Sridhar R, Dhinakar Raj G (2021) Genome sequencing and comparative genomics of Indian isolates of Brucella melitensis. Front Microbiol 12:698069

    Article  PubMed  PubMed Central  Google Scholar 

  • Kornspan D, Lubkovskaia R, Mathur S, Yeheskel A, Salmon-Divon M (2020) Genomic analysis of natural rough Brucella melitensis Rev. 1 vaccine strains: identification and characterization of mutations in key genes associated with bacterial lps biosynthesis and virulence. Int J Mol Sci 21(24):9341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledwaba MB, Glover BA, Matle I, Profiti G, Martelli PL, Casadio R, Zilli K, Janowicz A, Marotta F, Garofolo G, Van Heerden H (2021) Whole genome sequence analysis of Brucella abortus isolates from various regions of South Africa. Microorganisms 9(3):570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49(W1):W293–W296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Zheng D, Jin Q, Chen L, Yang J (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47(D1):D687–D692

    Article  CAS  PubMed  Google Scholar 

  • Megid J, Mathias LA, Robles CA (2010) Clinical manifestations of brucellosis in domestic animals and humans. Bentham Open

    Book  Google Scholar 

  • Ozer EA, Allen JP, Hauser AR (2014) Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC Genomics 15(1):1–17

    Article  Google Scholar 

  • Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ, Umayam L, Brinkac LM, Beanan MJ, Daugherty SC (2002) The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci 99(20):13148–13153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisarenko SV, Kovalev DA, Volynkina AS, Ponomarenko DG, Rusanova DV, Zharinova NV, Khachaturova AA, Tokareva LE, Khvoynova IG, Kulichenko AN (2018) Global evolution and phylogeography of Brucella melitensis strains. BMC Genomics 19(1):1–10

    Article  Google Scholar 

  • Sankarasubramanian J, Vishnu US, Gunasekaran P, Rajendhran J (2019) Development and evaluation of a core genome multilocus sequence typing (cgMLST) scheme for Brucella spp. Infect Genet Evol 67:38–43

    Article  CAS  PubMed  Google Scholar 

  • Sankarasubramanian J, Vishnu US, Sridhar J, Gunasekaran P, Rajendhran J (2015) Pan-genome of Brucella species. Indian J Microbiol 55:88–101

    Article  CAS  Google Scholar 

  • Schurig G, Boyle S, Sriranganathan N (1995) Brucella abortus vaccine strain RB51: a brief review. Archivos de Medicina Veterinaria (Chile) 27:19-22. https://biblioteca.inia.cl/bitstream/handle/20.500.14001/38564/NR19640.pdf?sequence=1

  • Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069

    Article  CAS  PubMed  Google Scholar 

  • Seemann T (2016) ABRicate: mass screening of contigs for antibiotic resistance genes. GitHub, San Francisco, CA

    Google Scholar 

  • Tan-KK TY, Chang LY (2015) Full genome SNP-based phylogenetic analysis reveals the origin and global spread of Brucella melitensis. BMC Genomics.[Internet] 16:93

    Article  PubMed  Google Scholar 

  • Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, Gladstone RA, Lo S, Beaudoin C, Floto RA, Frost SD (2020) Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 21:1–21

    Article  Google Scholar 

  • Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44(W1):W232–W235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uelze L, Grützke J, Borowiak M, Hammerl JA, Juraschek K, Deneke C, Tausch SH, Malorny B (2020) Typing methods based on whole genome sequencing data. One Health Outlook 2:1–19

    Article  Google Scholar 

  • Van Straten M, Bardenstein S, Keningswald G, Banai M (2016) Brucella abortus S19 vaccine protects dairy cattle against natural infection with Brucella melitensis. Vaccine 34(48):5837–5839

    Article  PubMed  Google Scholar 

  • Wang A, Chen Q, Wang L, Madson D, Harmon K, Gauger P, Zhang J, Li G (2019) Recombination between vaccine and field strains of porcine reproductive and respiratory syndrome virus. Emerg Infect Dis 25(12):2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wattam AR, Williams KP, Snyder EE, Almeida NF Jr, Shukla M, Dickerman AW, Crasta OR, Kenyon R, Lu J, Shallom JM, Yoo H (2009) Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J Bacteriol 191(11):3569–3579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Skyberg JA, Cao L, Clapp B, Thornburg T, Pascual DW (2013) Progress in Brucella vaccine development. Front Biol 8:60–77

    Article  Google Scholar 

  • Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, Carriço JA, Achtman M (2018) GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 28(9):1395–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zygmunt MS, Blasco JM, Letesson JJ, Cloeckaert A, Moriyón I (2009) DNA polymorphism analysis of Brucella lipopolysaccharide genes reveals marked differences in O-polysaccharide biosynthetic genes between smooth and rough Brucella species and novel species-specific markers. BMC Microbiol 9(1):1–13

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: Prasad Thomas, Anbazhagan S, Pallab Chaudhuri. Acquisition of data: Himani K. M, Karthikeyan R. Analysis and/or interpretation of data: Anbazhagan S, Jonathan Lalsiamthara. Drafting the manuscript: Anbazhagan S, Lakshmi Prakasan, Sonu S. Nair, Dinesh M, Abhishek, Ramachandra S.G, Chaturvedi V.K, Prasad Thomas.

Corresponding authors

Correspondence to Pallab Chaudhuri or Prasad Thomas.

Ethics declarations

Ethical approval

Animal experiments were not conducted for this research so ethical approval is not required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Figure S1: Phylogenetic tree based on the SNPs (GIF 15 kb)

ESM 2

Figure S2: Virulence factors presence or absence and sequence identity (JPG 832 kb)

ESM 3

Table S1: Metadata and assembly accession number of Brucella isolates involved in the study. Table S2: Details of phages and genomic islands predicted for Brucella species. Table S3: COGs annotations of the accessory genes predicted in the B. abortus genomes. Table S4: COGs annotations of the accessory genes predicted in the B. melitensis genomes. Table S5: Details of SNPs, (Non Synonymous and Synonymous) identified among 44 strains (XLSX 302 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbazhagan, S., Himani, K., Karthikeyan, R. et al. Comparative genomics of Brucella abortus and Brucella melitensis unravels the gene sharing, virulence factors and SNP diversity among the standard, vaccine and field strains. Int Microbiol 27, 101–111 (2024). https://doi.org/10.1007/s10123-023-00374-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-023-00374-w

Keywords

Navigation