Skip to main content
Log in

The Crystallization Behavior Regulating Nature of Hydrogen Bonds Interaction on Polyamide 6,6 by Poly(vinyl pyrrolidone)

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The crystallization behavior of polyamide 6,6 (PA66) under complex flow field is of great importance for its final mechanical properties. Poly(vinyl pyrrolidone) (PVP) was applied as crystallization modifying agency to improve processability of PA66. The regulation nature on hydrogen bonds (H-bonds) interaction of PVP was studied upon cooling process. As revealed by in situ FTIR, the sample with 5 wt% PVP displays decreased enthalpy change (ΔH) for both the generation of H-bonds and the transition of H-bonds from “disordered” to “ordered” state, which illustrates the molecular mechanism for the regulation of crystallzation behavior. Moveover, 2D-WAXD is applied to reveal the evolution of microstructure for sample under external injection field. Hermans orientation factor (fH) decreases obviously with the addition of PVP, because the relaxation of chain segments is promoted as well the crystallization is retarded. The above crystallization and microstructure changes during the processing provokes the improvement of processability without the apparent sacrifice of mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sang, Z. H.; Xie, X. L.; Zhou, S. Y.; Li, Y.; Yan, Z.; Xu, L.; Zhong, G. J.; Li, Z. M. Gradient structure of crystalline morphology in injection-molded polylactide parts tuned by oscillation shear flow and its influence on thermomechanical performance. Ind. Eng. Chem. Res. 2017, 56, 6295–6306.

    Article  CAS  Google Scholar 

  2. Zhao, Z.; Zhou, S.; Hrymak, A. N.; Kamal, M. R.; Ai, T. Microstructure and orientation evolution of microinjection molded β-nucleated isotactic polypropylene/poly(ethylene terephthalate) blends. Polym. Eng. Sci. 2020, 61, 971–982.

    Article  Google Scholar 

  3. Yang, L.; Su, J.; Yang, Q.; Zhang, T.; Zhao, Z.; Huang, Y.; Liao, X. Effective in situ polyamide 6 microfibrils in isotactic polypropylene under microinjection molding: significant improvement of mechanical performance. J. Mater. Sci. 2016, 51, 10386–10399.

    Article  CAS  Google Scholar 

  4. Gao, Y.; Dong, X.; Wang, L.; Liu, G.; Liu, X.; Tuinea-Bobe, C.; Whiteside, B.; Coates, P.; Wang, D.; Han, C. C. Flow-induced crystallization of long chain aliphatic polyamides under a complex flow field: inverted anisotropic structure and formation mechanism. Polymer 2015, 73, 91–101.

    Article  CAS  Google Scholar 

  5. Peterlin, A. Drawing and extrusion of semi-crystalline polymers. Colloid. Polym. Sci. 1987, 265, 357–382.

    Article  CAS  Google Scholar 

  6. Schafer, C.; Meyer, S. P.; Osswald, T. A. A novel extrusion process for the production of polymer micropellets. Polym. Eng. Sci. 2018, 58, 2264–2275.

    Article  Google Scholar 

  7. Huang, Z.; Luo, P.; Tong, J.; Su, F. Velocity distribution of extensional flow fields in an eccentric cylinder of an extensional extruder. J. Macromol. Sci. B. 2018, 57, 732–745.

    Article  CAS  Google Scholar 

  8. Yan, J. J.; Xiao, C. F.; Wang, C.; Fu, H.; An, S. L.; Jiang, Y. M. Crystalline structure changes of poly(vinylidene fluoride) fibers during stretching process. Acta Polymerica Sinica (in Chinese) 2019, 50, 752–760.

    CAS  Google Scholar 

  9. Schultz, J. M.; Hsiao, B. S.; Samon, J. M. Structural development during the early stages of polymer melt spinning by in-situ synchrotron X-ray techniques. Polymer 2000, 41, 8887–8895.

    Article  CAS  Google Scholar 

  10. Zhang, Q.; Li, L.; Su, F.; Ji, Y.; Ali, S.; Zhao, H.; Meng, L.; Li, L. From molecular entanglement network to crystal-cross-linked network and crystal scaffold during film blowing of polyethylene: an in situ synchrotron radiation small- and wide-angle X-ray scattering study. Macromolecules 2018, 51, 4350–4362.

    Article  CAS  Google Scholar 

  11. Zhang, R.; Ji, Y. X.; Zhang, Q. L.; Ju, J. Z.; Sarmad, A.; Li, L. F.; Zhao, H. Y.; Li, L. B. A universal blown film apparatus for in situ X-ray measurements. Chinese J. Polym. Sci. 2017, 35, 1508–1516.

    Article  CAS  Google Scholar 

  12. Wang, K.; Chen, F.; Li, Z.; Fu, Q. Control of the hierarchical structure of polymer articles via “structuring” processing. Prog. Polym. Sci. 2014, 39, 891–920.

    Article  CAS  Google Scholar 

  13. Su, R.; Su, J.; Wang, K.; Yang, C.; Zhang, Q.; Fu, Q. Shear-induced change of phase morphology and tensile property in injection-molded bars of high-density polyethylene/polyoxymethylene blends. Eur. Polym. J. 2009, 45, 747–756.

    Article  CAS  Google Scholar 

  14. Ren, J. Y.; Yang, S. G.; Li, Y.; Lei, J.; Huang, H. D.; Pan, M.; Lin, H.; Zhong, G. J.; Li, Z. M. Coupling effect of pressure and flow fields on the crystallization of poly(vinylidene fluoride)/poly(methyl methacrylate) miscible blends. Polymer 2021, 220, 123565.

    Article  CAS  Google Scholar 

  15. Pantani, R.; Coccorullo, I.; Speranza, V.; Titomanlio, G. Morphology evolution during injection molding: effect of packing pressure. Polymer 2007, 48, 2778–2790.

    Article  CAS  Google Scholar 

  16. Wang, B.; Wan, T.; Zeng, W.; Zhou, X.; Zhang, X. Cystallization and morphology of polyamide 1010/single-walled carbon nanotube nanocomposites under elevated pressure. Polym. Int. 2012, 61, 1462–1469.

    Article  CAS  Google Scholar 

  17. Wang, L. L.; Zhu, P.; Dong, X.; Wang, D. J. Strain-induced crystallization of long chain polyamide and its copolymers. Acta Polymerica Sinica (in Chinese) 2020, 51, 1–11.

    Google Scholar 

  18. Na, B.; Zhang, Q.; Wang, K.; Li, L.; Fu, Q. Origin of various lamellar orientations in high-density polyethylene/isotactic polypropylene blends achieved via dynamic packing injection molding: bulk crystallization vs. epitaxy. Polymer 2005, 46, 819–825.

    Article  CAS  Google Scholar 

  19. Liao, T.; Zhao, X.; Yang, X.; Coates, P.; Whiteside, B.; Barker, D.; Thompson, G.; Lai, Y.; Jiang, Z.; Men, Y. In situ synchrotron small angle X-ray scattering investigation of structural formation of polyethylene upon micro-injection molding. Polymer 2021, 215, 123390.

    Article  CAS  Google Scholar 

  20. Coyle, D. J.; J. W. Blake, C. W. M. The kinematics of fountain flow in mold-filling. AIChE J. 1987, 33, 1168–1177.

    Article  CAS  Google Scholar 

  21. Mavridis, H.; Hrymak, A. N.; Vlachopoulos, J. The effect of fountain flow on molecular orientation in injection molding. J. Rheol. 1988, 32, 639–663.

    Article  CAS  Google Scholar 

  22. Schrauwen, B. A. G.; Breemen, L. C. A. V.; Spoelstra, A. B.; Govaert, L. E.; Peters, G. W. M.; Meijer, H. E. H. Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules 2004, 37, 8618–8633.

    Article  CAS  Google Scholar 

  23. Stribeck, N.; Schneider, K.; Zeinolebadi, A.; Li, X.; Sanporean, C. G.; Vuluga, Z.; Iancu, S.; Duldner, M.; Santoro, G.; Roth, S. V. Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle X-ray scattering. Sci. Technol. Adv. Mater. 2014, 15, 015004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, H. R.; Lei, J.; Li, L.; Fu, Q.; Li, Z. M. Formation of interlinked shish-kebabs in injection-molded polyethylene under the coexistence of lightly cross-linked chain network and oscillation shear flow. Macromolecules 2012, 45, 6600–6610.

    Article  CAS  Google Scholar 

  25. Liu, X. R.; Wang, Y.; Liu, L. Y.; Dong, X.; Wang, D. J. Time and temperature dependence of the structural evolution for polyamide 1012. Chinese J. Polym. Sci. 2020, 38, 993–998.

    Article  CAS  Google Scholar 

  26. Dong, S. Y.; Zhu, P.; Liu, J. G.; Wang, D. J.; Dong, X. Thermal treatment effects on the microstructure and tensile properties of transparent polyamides. Acta Polymerica Sinica (in Chinese) 2019, 50, 189–198.

    CAS  Google Scholar 

  27. Lai, Y.; Wang, Y.; Wang, L. L.; Li, X.; Zhao, J. B.; Dong, X.; Wang, D. J. Optical inversion characteristics of PA56 spherulites. Acta Polymerica Sinica (in Chinese) 2020, 51, 1267–1274.

    CAS  Google Scholar 

  28. Heintz, A. M.; McKiernan, R. L.; Gido, S. P.; Penelle, J.; Hsu, S. L. Crystallization behavior of strongly interacting chains. Macromolecules 2002, 35, 3117–3125.

    Article  CAS  Google Scholar 

  29. Ma, Y.; Zhou, T.; Su, G.; Li, Y.; Zhang, A. Understanding the crystallization behavior of polyamide 6/polyamide 66 alloys from the perspective of hydrogen bonds: projection moving-window 2D correlation FTIR spectroscopy and the enthalpy. RSC Adv. 2016, 6, 87405–87415.

    Article  CAS  Google Scholar 

  30. Liu, X.; Wang, Y.; Wang, Z.; Cavallo, D.; Müller, A. J.; Zhu, P.; Zhao, Y.; Dong, X.; Wang, D. The origin of memory effects in the crystallization of polyamides: role of hydrogen bonding. Polymer 2020, 188, 122117.

    Article  CAS  Google Scholar 

  31. Jape, S. P.; Deshpande, V. D. Nonisothermal crystallization kinetics of nylon 66/LCP blends. Thermochim Acta 2017, 655, 1–12.

    Article  CAS  Google Scholar 

  32. Skrovanek, D. J.; Painter, P. C.; Coleman, M. M. Hydrogen bonding in polymers. 2. Infrared temperature studies of nylon 11. Macromolecules 1986, 19, 699–705.

    Article  CAS  Google Scholar 

  33. Skrovanek, D. J.; Howe, S. E.; Painter, P. C.; Coleman, M. M. Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide. Macromolecules 1985, 18, 1676–1683.

    Article  CAS  Google Scholar 

  34. Roberts, M. F.; Jenekhe, S. A. Site-specific reversible scission of hydrogen-bonds in polymers—an investigation of polyamides and their lewis acid-base complexes by infrared-spectroscopy. Macromolecules 1991, 24, 3142–3146.

    Article  CAS  Google Scholar 

  35. Vasanthan, N.; Kotek, R.; Jung, D. W.; Shin, D.; Tonelli, A. E.; Salem, D. R. Lewis acid-base complexation of polyamide 66 to control hydrogen bonding, extensibility and crystallinity. Polymer 2004, 45, 4077–4085.

    Article  CAS  Google Scholar 

  36. Wu, Y. J.; Xu, Y. Z.; Wang, D. J.; Zhao, Y.; Weng, S. F.; Xu, D. F.; Wu, J. G. FT-IR spectroscopic investigation on the interaction between nylon 66 and lithium salts. J. Appl. Polym. Sci. 2004, 91, 2869–2875.

    Article  CAS  Google Scholar 

  37. Thyagarajan, G.; Janarthanan, V. Fourier-transform infrared and thermal-analysis studies of polyvinyl-alcohol) polyvinyl pyrrolidone) blends. Polymer 1989, 30, 1797–1799.

    Article  CAS  Google Scholar 

  38. Hao, C.; Zhao, Y.; Wang, D.; Lai, G. Study on the thermal behaviors and the morphology in PVP and nylon 6 blends. J. Appl. Polym. Sci. 2012, 123, 375–381.

    Article  CAS  Google Scholar 

  39. Jr, R. L. C.; Craven, M. D.; Kander, R. G. Nylon 66/poly (vinyl pyrrolidone) reinforced composites: 2. Bulk mechanical properties and moisture effects. Compos. Part A-Appl. S 1999, 30, 37–48.

    Article  Google Scholar 

  40. Clark, J. R. L.; Kander, R. G.; Sauer, B. B. Nylon 66/poly(vinyl pyrrolidone) reinforced composites: 1. Interphase microstructure and evaluation of fiber-matrix adhesion. Compos. Part A-Appl. S 1999, 30, 27–36.

    Article  Google Scholar 

  41. Moskala, E. J.; Varnell, D. F.; Coleman, M. M. Concerning the miscibility of polyvinyl phenol) blends—FTIR study. Polymer 1985, 26, 228–234.

    Article  CAS  Google Scholar 

  42. Hermans, J. J.; Hermans, P. H.; Vermaas, D.; Weidinger, A. Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society. 1946, 65, 427–447.

    Article  CAS  Google Scholar 

  43. Bell, J. P.; Slade, P. E.; Dumbleton, J. H. Multiple melting in nylon 66. J. Polym. Sci., Part A: Polym. Chem. 1968, 6, 1773–1774.

    Article  CAS  Google Scholar 

  44. Sweet, G. E.; Bell, J. P. Multiple endotherm melting behavior in relation to polymer morphology. J. Polym. Sci., Part B: Polym. Phys. 1972, 10, 1273–1274.

    CAS  Google Scholar 

  45. Lin, W. P.; Gowayed, Y. Effects of acid dyes on crystallization and mechanical properties of melt-reprocessed nylon 66. J. Appl. Polym. Sci. 1999, 74, 2386–2396.

    Article  CAS  Google Scholar 

  46. Strobl, G. R.; Schneider, M. Direct evaluation of the electron-density correlation-function of partially crystalline polymers. J. Polym. Sci., Part B: Polym. Phys. 1980, 18, 1343–1359.

    CAS  Google Scholar 

  47. Goderis, B.; Reynaers, H.; Koch, M. H. J.; Mathot, V. B. F. Use of SAXS and linear correlation functions for the determination of the crystallinity and morphology of semi-crystalline polymers. Application to linear polyethylene. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 1715–1738.

    Article  CAS  Google Scholar 

  48. Avrami, M. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 1939, 7, 1103–1112.

    Article  CAS  Google Scholar 

  49. Wu, D.; Cheng, Y.; Feng, S.; Yao, Z.; Zhang, M. Crystallization behavior of polylactide/graphene composites. Ind. Eng. Chem. Res. 2013, 52, 6731–6739.

    Article  CAS  Google Scholar 

  50. Coburn, N. D. P.; Kaya, D.; Gupta, J. Isothermal and non-isothermal crystallization kinetics of composites of poly(propylene) and MWCNTs. Adv. Ind. Eng. Polym. Res. 2018, 1, 99–110.

    Google Scholar 

  51. Ying, J.; Xie, X.; Peng, S.; Zhou, H.; Li, D. Morphology and rheology of PP/POE blends in high shear stress field. J. Thermoplast Compos. 2018, 31, 1263–1280.

    Article  CAS  Google Scholar 

  52. Fitchmun, D. R.; Mencik, Z. Morphology of injection-molded polypropylene. J. Polym. Sci., Part B: Polym. Phys. 1973, 11, 951–971.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the materials project (No.104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Bo Huang or Xia Dong.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2852_MOESM1_ESM.pdf

The Crystallization Behavior Regulating Nature of Hydrogen Bonds Interaction on Polyamide 6,6 by Poly(vinyl pyrrolidone)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Peng, L., Lin, JL. et al. The Crystallization Behavior Regulating Nature of Hydrogen Bonds Interaction on Polyamide 6,6 by Poly(vinyl pyrrolidone). Chin J Polym Sci 41, 394–404 (2023). https://doi.org/10.1007/s10118-022-2852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2852-8

Keywords

Navigation