Skip to main content
Log in

Experimental and Theoretical Study on Piezoresistive Behavior of Compressible Melamine Sponge Modified by Carbon-based Fillers

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

High-performance compression sensors have been playing an increasingly important role in human motion detection, health monitoring and human-machine interfaces over recent years. However, it remains a great challenge to develop theoretical models providing practical guidance to the sensor design. Herein, carbon black (CB), carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) were respectively incorporated into porous melamine sponges by a facile approach of dip-coating to fabricate compression sensors. Uniaxial compression-resistance tests show that the compressibility, stability and piezoresistive sensitivity of sensors could be tailored by the filler type and concentration. A model considering the number of conductive pathways (NCP) is given to describe the relationship between the resistance change and applied compression, showing extremely good agreement with the experimental data. Also, the correlation between the equivalent filler volume fraction and conductivity is described by the other two models proposed by McLachlan and Kirkpatrick, revealing the electrical percolation thresholds (Φc) for the conductive systems under compression. Among the three fillers, CB particles endowed the composite with the best piezoresistive sensitivity but the largest Φc due to its small size and aspect ratio. A combination of experimental study and theoretical model opens up a way of further understanding the piezoresistive sensing behavior as well as optimizing the electrical property and piezoresistivity of compressive conductive polymer composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie, L.; Zhu, Y. Tune the phase morphology to design conductive polymer composites: a review. Polym. Compos. 2018, 39, 2985–2996.

    Article  CAS  Google Scholar 

  2. Zhang, S.; Liu, H.; Yang, S.; Shi, X.; Zhang, D.; Shan, C.; Mi, L.; Liu, C.; Shen, C.; Guo, Z. Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces 2019, 11, 10922–10932.

    Article  CAS  PubMed  Google Scholar 

  3. Boland, C. S.; Khan, U.; Binions, M.; Barwich, S.; Boland, J. B.; Weaire, D.; Coleman, J. N. Graphene-coated polymer foams as tuneable impact sensors. Nanoscale 2018, 10, 5366–5375.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, J.; Zhu, Y.; Huang, J.; Zhang, J.; Pan, D.; Zhou, J.; Ryu, J. E.; Umar, A.; Guo, Z. Advances in responsively conductive polymer composites and sensing applications. Polym. Rev. 2020, 61, 157–193.

    Article  Google Scholar 

  5. Chen, J.; Li, H.; Yu, Q.; Hu, Y.; Cui, X.; Zhu, Y.; Jiang, W. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Compos. Sci. Technol. 2018, 168, 388–396.

    Article  CAS  Google Scholar 

  6. Wan, Y.; Qiu, Z.; Hong, Y.; Wang, Y.; Zhang, J.; Liu, Q.; Wu, Z.; Guo, C. F. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures. Adv. Electron. Mater. 2018, 4, 1700586.

    Article  Google Scholar 

  7. Lin, Y.; Liu, S.; Chen, S.; Wei, Y.; Dong, X.; Liu, L. A highly stretchable and sensitive strain sensor based on graphene-elastomer composites with a novel double-interconnected network. J. Mater. Chem. C 2016, 4, 6345–6352.

    Article  CAS  Google Scholar 

  8. Wang, M.; Zhang, K.; Dai, X. X.; Li, Y.; Guo, J.; Liu, H.; Li, G. H.; Tan, Y. J.; Zeng, J. B.; Guo, Z. Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale 2017, 9, 11017–11026.

    Article  CAS  PubMed  Google Scholar 

  9. Qu, M.; Qin, Y.; Xu, W.; Zheng, Z.; Xu, H.; Schubert, D. W.; Gao, Q. Electrically conductive NBR/CB flexible composite film for ultrastretchable strain sensors: fabrication and modeling. Appl. Nanosci. 2021, 11, 429–439.

    Article  CAS  Google Scholar 

  10. García-Macías, E.; Downey, A.; D’Alessandro, A.; Castro-Triguero, R.; Laflamme, S.; Ubertini, F. Enhanced lumped circuit model for smart nanocomposite cement-based sensors under dynamic compressive loading conditions. Sensors Actuators, A Phys. 2017, 260, 45–57.

    Article  Google Scholar 

  11. Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 1793–1803.

    Article  Google Scholar 

  12. Zhang, X.; Pan, Y.; Zheng, Q.; Yi, X. Time dependence of piezoresistance for the conductor-filled polymer composites. J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 2739–2749.

    Article  CAS  Google Scholar 

  13. Wang, X.; Liu, X.; Schubert, D. W. Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 2021, 13, 1–19.

    Article  Google Scholar 

  14. Guo, C.; Kondo, Y.; Takai, C.; Fuji, M. Multi-walled carbon nanotubes/silicone conductive foams and their piezoresistive behaviors. J. Mater. Sci. Mater. Electron. 2017, 28, 7633–7642.

    Article  CAS  Google Scholar 

  15. Sánchez, M.; Moriche, R.; Sánchez-Romate, X. F.; Prolongo, S. G.; Rams, J.; Ureña, A. Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: a deeper theoretical to experimental analysis. Compos. Sci. Technol. 2019, 181, 107697.

    Article  Google Scholar 

  16. Qu, M.; Qin, Y.; Sun, Y.; Xu, H.; Schubert, D. W.; Zheng, K.; Xu, W.; Nilsson, F. Biocompatible, flexible strain sensor fabricated with polydopamine-coated nanocomposites of nitrile rubber and carbon black. ACS Appl. Mater. Interfaces 2020, 12, 42140–42152.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, X.; Alian, A. R.; Meguid, S. A. Coupled electromechanical modeling of piezoresistive behavior of CNT-reinforced nanocomposites with varied morphology and concentration. Eur. J. Mech. A/Solids 2020, 84, 104053.

    Article  Google Scholar 

  18. Qin, Y.; Qu, M.; Pan, Y.; Zhang, C.; Schubert, D. W. Fabrication, characterization and modelling of triple hierarchic PET/CB/TPU composite fibres for strain sensing. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105724.

    Article  CAS  Google Scholar 

  19. Luo, X.; Qu, M.; Schubert, D. W. Electrical conductivity and fiber orientation of poly(methyl methacrylate)/carbon fiber composite sheets with various thickness. Polym. Compos. 2020, 42, 548–558.

    Article  Google Scholar 

  20. Luo, X.; Schubert, D. W. Examining the contribution of factors affecting the electrical behavior of poly(methyl methacrylate)/graphene nanoplatelets composites. J. Appl. Polym. Sci. 2021, 138, 1–12.

    Article  Google Scholar 

  21. Luo, X.; Yang, G.; Schubert, D. W. Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: synergistic effect and tunable conductivity anisotropy. Adv. Compos. Hybrid Mater. 2022, 5, 250–262.

    Article  CAS  Google Scholar 

  22. Luo, X.; Schubert, D. W. Positive temperature coefficient (PTC) materials based on amorphous poly(methyl methacrylate) with ultrahigh ptc intensity, tunable switching temperature and good reproducibility. Mater. Today Commun. 2022, 30, 103078.

    Article  CAS  Google Scholar 

  23. McLachlan, D. S.; Blaszkiewicz, M.; Newnham, R. E. Electrical resistivity of composites. Phys. Rev. B 1990, 46, 11247–11249.

    Google Scholar 

  24. Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 1973, 45, 574–588.

    Article  Google Scholar 

  25. Widdle, R. D.; Bajaj, A. K.; Davies, P. Measurement of the poisson’s ratio of flexible polyurethane foam and its influence on a uniaxial compression model. Int. J. Eng. Sci. 2008, 46, 31–49.

    Article  CAS  Google Scholar 

  26. Zhu, C.; Zheng, Z.; Wang, S.; Zhao, K.; Yu, J. Modification and verification of the deshpande—fleck foam model: a variable ellipticity. Int. J. Mech. Sci. 2019, 151, 331–342.

    Article  Google Scholar 

  27. Liu, X.; Krückel, J.; Zheng, G.; Schubert, D. W. Mapping the electrical conductivity of poly (methyl methacrylate)/carbon black composites prior to and after shear. ACS Appl. Mater. Interfaces 2013, 5, 8857–8860.

    Article  CAS  PubMed  Google Scholar 

  28. Cao, C. F.; Zhang, G. D.; Zhao, L.; Gong, L. X.; Gao, J. F.; Jiang, J. X.; Tang, L. C.; Mai, Y. W. Design of mechanically stable, electrically conductive and highly hydrophobic three-dimensional graphene nanoribbon composites by modulating the interconnected network on polymer foam skeleton. Compos. Sci. Technol. 2019, 171, 162–170.

    Article  CAS  Google Scholar 

  29. Li, X.; Wang, Y.; Hou, Y.; Yin, C.; Yin, Z. Graphene nanosheet/Cu nanowire composite aerogel with a thin PDMS coating for electrically conductive pressure sensing rubber. Compos. Part A 2021, 140, 106192.

    Article  CAS  Google Scholar 

  30. Ding, Y.; Yang, J.; Tolle, C. R.; Zhu, Z. Flexible and compressible PEDOT:PSS@melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection. ACS Appl. Mater. Interfaces 2018, 10, 16077–16086.

    Article  CAS  PubMed  Google Scholar 

  31. Huang, K.; Ning, H.; Hu, N.; Liu, F.; Wu, X.; Wang, S.; Liu, Y.; Zou, R.; Yuan, W.; Alamusi; Wu, L. Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process. Compos. Sci. Technol. 2020, 192, 108105.

    Article  CAS  Google Scholar 

  32. Zhou, K.; Xu, W.; Yu, Y.; Zhai, W.; Yuan, Z.; Dai, K.; Zheng, G.; Mi, L.; Pan, C.; Liu, C.; Shen, C. Tunable and nacre-mimetic multifunctional electronic skins for highly stretchable contact-noncontact sensing. Small 2021, 17, 1–10.

    Article  Google Scholar 

  33. Spinelli, G.; Lamberti, P.; Tucci, V.; Vertuccio, L.; Guadagno, L. Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring. Compos. Part B Eng. 2018, 145, 90–99.

    Article  CAS  Google Scholar 

  34. Liu, C.; Zhu, W.; Li, M.; Sun, X.; Guo, X.; Liu, J.; Liu, P.; Zhang, Y.; Huang, Y. Highly stable pressure sensor based on carbonized melamine sponge using fully wrapped conductive path for flexible electronic skin. Org. Electron. 2020, 76, 105447.

    Article  CAS  Google Scholar 

  35. Ding, C.; Liu, Y.; Xie, P.; Lan, J.; Yu, Y.; Fu, X.; Yang, X.; Zhong, W.-H. A novel carbon aerogel enabling respiratory monitoring for biofacial masks. J. Mater. Chem. A 2021, 9, 13143–13150.

    Article  CAS  Google Scholar 

  36. Ma, Z.; Wei, A.; Ma, J.; Shao, L.; Jiang, H.; Dong, D.; Ji, Z.; Wang, Q.; Kang, S. Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale 2018, 10, 7116–7126.

    Article  CAS  PubMed  Google Scholar 

  37. Fei, Y.; Chen, F.; Fang, W.; Xu, L.; Ruan, S.; Liu, X.; Zhong, M.; Kuang, T. High-strength, flexible and cycling-stable piezo-resistive polymeric foams derived from thermoplastic polyurethane and multi-wall carbon nanotubes. Compos. Part B Eng. 2020, 199, 108279.

    Article  CAS  Google Scholar 

  38. Wu, X.; Han, Y.; Zhang, X.; Zhou, Z.; Lu, C. Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Adv. Funct. Mater. 2016, 26, 6246–6256.

    Article  CAS  Google Scholar 

  39. Xu, H.; Qu, M.; Pan, Y.; Schubert, D. W. Conductivity of poly(methyl methacrylate)/polystyrene/carbon black and poly(ethyl methacrylate)/polystyrene/carbon black ternary composite films. Chinese J. Polym. Sci. 2020, 38, 288–297.

    Article  CAS  Google Scholar 

  40. Qu, M.; Nilsson, F.; Schubert, D. W. Effect of filler orientation on the electrical conductivity of carbon fiber/PMMA composites. Fibers 2018, 6, 3.

    Article  Google Scholar 

  41. Liu, X.; Li, C.; Pan, Y.; Schubert, D. W.; Liu, C. Shear-induced rheological and electrical properties of molten poly(methyl methacrylate)/carbon black nanocomposites. Compos. Part B Eng. 2019, 164, 37–44.

    Article  CAS  Google Scholar 

  42. Vieira, L. de S.; dos Anjos, E. G. R.; Verginio, G. E. A.; Oyama, I. C.; Braga, N. F.; da Silva, T. F.; Montagna, L. S.; Passador, F. R. A review concerning the main factors that interfere in the electrical percolation threshold content of polymeric antistatic packaging with carbon fillers as antistatic agent. Nano Sel. 2022, 3, 248–260.

    Article  CAS  Google Scholar 

  43. Ma, Z.; Wei, A.; Li, Y.; Shao, L.; Zhang, H.; Xiang, X.; Wang, J.; Ren, Q.; Kang, S.; Dong, D. Lightweight, flexible and highly sensitive segregated microcellular nanocomposite piezoresistive sensors for human motion detection. Compos. Sci. Technol. 2021, 203, 108571.

    Article  CAS  Google Scholar 

  44. Fei, Y.; Chen, F.; Fang, W.; Hejna, A.; Xu, L.; Liu, T.; Zhong, M.; Yang, J.; Kuang, T. Conductive thermoplastic polyurethane nanocomposite foams derived from cellulose/MWCNT aerogel framework: simultaneous enhancement of piezoresistance, strength, and endurance. J. Mater. Chem. C 2021, 9, 13103–13114.

    Article  CAS  Google Scholar 

  45. Sang, Z.; Ke, K.; Manas-Zloczower, I. Effect of carbon nanotube morphology on properties in thermoplastic elastomer composites for strain sensors. Compos. Part A Appl. Sci. Manuf. 2019, 121, 207–212.

    Article  CAS  Google Scholar 

  46. Gong, S.; Wu, D.; Li, Y.; Jin, M.; Xiao, T.; Wang, Y.; Xiao, Z.; Zhu, Z.; Li, Z. Temperature-independent piezoresistive sensors based on carbon nanotube/polymer nanocomposite. Carbon 2018, 137, 188–195.

    Article  CAS  Google Scholar 

  47. Al-Bahrani, M.; Cree, A. Micro-scale damage sensing in self-sensing nanocomposite material based CNTs. Compos. Part B Eng. 2021, 205, 108479.

    Article  CAS  Google Scholar 

  48. Souri, H.; Yu, J.; Jeon, H.; Kim, J. W.; Yang, C. M.; You, N. H.; Yang, B. J. A theoretical study on the piezoresistive response of carbon nanotubes embedded in polymer nanocomposites in an elastic region. Carbon 2017, 120, 427–437.

    Article  CAS  Google Scholar 

  49. Munawar, M. A.; Schubert, D. W. Highly oriented electrospun conductive nanofibers of biodegradable polymers-revealing the electrical percolation thresholds. ACS Appl. Polym. Mater. 2021, 3, 2889–2901.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ling Luo.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, XL., Schubert, D.W. Experimental and Theoretical Study on Piezoresistive Behavior of Compressible Melamine Sponge Modified by Carbon-based Fillers. Chin J Polym Sci 40, 1503–1512 (2022). https://doi.org/10.1007/s10118-022-2771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2771-8

Keywords

Navigation