Skip to main content
Log in

100 cm2 Organic Photovoltaic Cells with 23% Efficiency under Indoor Illumination

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The application of organic photovoltaic (OPV) cells to drive off-grid microelectronic devices under indoor light has attracted broad attention. As organic semiconductors intrinsically have less ordered intermolecular packing than inorganic materials, the relatively larger energetic disorder is one of the main results that limit the photovoltaic efficiency of the OPV cells at low carrier density. Here, we optimize the alkyl chains of non-fullerene acceptors to get suppressed energetic disorder. We find the optimal acceptor DTz-R1 with the shortest alkyl chain has the strongest crystalline property and lowest energetic disorder. As a result, over 26% efficiency is recorded for the 1 cm2 OPV cells under a light-emitting diode illumination of 500 lux. We also fabricate a 100 cm2 cell device and get a PCE of 23.0%, which is an outstanding value for large-area OPV cells. These results suggest that modulation of the energetic disorder is of great importance for further improving the efficiency of OPV cells, especially for indoor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brabec, C. J. Organic photovoltaics: technology and market. Sol. Energy Mater Sol. Cells 2004, 83, 273.

    Article  CAS  Google Scholar 

  2. Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T. T.; Krebs, F. C. Roll-to-roll fabrication of polymer solar cells. Mater. Today 2012, 15, 36.

    Article  CAS  Google Scholar 

  3. Heeger, A. J. 25th Anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 2014, 26, 10.

    Article  CAS  PubMed  Google Scholar 

  4. Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mat. Sol. C 2009, 93, 394.

    Article  CAS  Google Scholar 

  5. Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 33, 2102420.

    Article  CAS  Google Scholar 

  6. Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Tandem organic solar cell with 20.2% efficiency. Joule 2022, 6, 171.

    Article  CAS  Google Scholar 

  7. Chong, K.; Xu, X.; Meng, H.; Xue, J.; Yu, L.; Ma, W.; Peng, Q. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv. Mater. 2022, 34, 2109516.

    Article  CAS  Google Scholar 

  8. Yan, N.; Zhao, C.; You, S.; Zhang, Y.; Li, W. Recent progress of thin-film photovoltaics for indoor application. Chinese Chem. Lett. 2020, 31, 643.

    Article  CAS  Google Scholar 

  9. Russo, J.; Ray, W.; Litz, M. S. Low light illumination study on commercially available homojunction photovoltaic cells. Appl. Energy 2017, 191, 10.

    Article  CAS  Google Scholar 

  10. Cui, Y.; Wang, Y.; Bergqvist, J.; Yao, H.; Xu, Y.; Gao, B.; Yang, C.; Zhang, S.; Inganäs, O.; Gao, F.; Hou, J. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nat. Energy 2019, 4, 768.

    Article  CAS  Google Scholar 

  11. Mathews, I.; Kantareddy, S. N.; Buonassisi, T.; Peters, I. M. Technology and market perspective for indoor photovoltaic cells. Joule 2019, 3, 1415.

    Article  CAS  Google Scholar 

  12. Bai, F.; Zhang, J.; Zeng, A.; Zhao, H.; Duan, K.; Yu, H.; Cheng, K.; Chai, G.; Chen, Y.; Liang, J.; Ma, W.; Yan, H. A highly crystalline non-fullerene acceptor enabling efficient indoor organic photovoltaics with high EQE and fill factor. Joule 2021, 5, 1231.

    Article  CAS  Google Scholar 

  13. Ding, Z.; Zhao, R.; Yu, Y.; Liu, J. All-polymer indoor photovoltaics with high open-circuit voltage. J. Mater. Chem. A 2019, 7, 26533.

    Article  CAS  Google Scholar 

  14. Xie, L.; Song, W.; Ge, J.; Tang, B.; Zhang, X.; Wu, T.; Ge, Z. Recent progress of organic photovoltaics for indoor energy harvesting. Nano Energy 2021, 82, 105770.

    Article  CAS  Google Scholar 

  15. Mainville, M.; Leclerc, M. Recent progress on indoor organic photovoltaics: from molecular design to production scale. ACS Energy Lett. 2020, 5, 1186.

    Article  CAS  Google Scholar 

  16. Li, B.; Hou, B.; Amaratunga, G. A. J. Indoor photovoltaics, the next big trend in solution-processed solar cells. InfoMat 2021, 3, 445.

    Article  CAS  Google Scholar 

  17. Liu, S.; Yuan, J.; Deng, W.; Luo, M.; Xie, Y.; Liang, Q.; Zou, Y.; He, Z.; Wu, H.; Cao, Y. High-efficiency organic solar cells with low nonradiative recombination loss and low energetic disorder. Nat. Photon. 2020, 14, 300.

    Article  CAS  Google Scholar 

  18. Xiao, B.; Calado, P.; MacKenzie, R. C. I.; Kirchartz, T.; Yan, J.; Nelson, J. Relationship between fill factor and light intensity in solar cells based on organic disordered semiconductors: the role of tail states. Phys. Rev. Appl. 2020, 14, 024034.

    Article  CAS  Google Scholar 

  19. Kupgan, G.; Chen, X. K.; Brédas, J. L. Low energetic disorder in small-molecule non-fullerene electron acceptors. ACS Mater. Lett. 2019, 1, 350.

    Article  CAS  Google Scholar 

  20. Gupta, V.; Kyaw, A. K.; Wang, D. H.; Chand, S.; Bazan, G. C.; Heeger, A. J. Barium: an efficient cathode layer for bulk-heterojunction solar cells. Sci. Rep. 2013, 3, 1965.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Athanasopoulos, S.; Bassler, H.; Kohler, A. Disorder vs delocalization: which is more advantageous for high-efficiency organic solar cells. J Phys Chem Lett 2019, 10, 7107.

    Article  CAS  PubMed  Google Scholar 

  22. Hawks, S. A.; Deledalle, F.; Yao, J.; Rebois, D. G.; Li, G.; Nelson, J.; Yang, Y.; Kirchartz, T.; Durrant, J. R. Relating recombination, density of states, and device performance in an efficient polymer:fullerene organic solar cell Blend. Adv. Energy Mater. 2013, 3, 1201.

    Article  CAS  Google Scholar 

  23. Lv, J.; Feng, Y.; Fu, J.; Gao, J.; Singh, R.; Kumar, M.; Kim, M.; Tang, H.; Lu, S.; Zhang, W.; McCulloch, I.; Li, J.; Kan, Z. Energetic disorder and activation energy in efficient ternary organic solar cells with nonfullerene acceptor Eh-IDTBR as the third component. Solar RRL 2019, 4, 1900403.

    Article  CAS  Google Scholar 

  24. Tang, A.; Xiao, B.; Wang, Y.; Gao, F.; Tajima, K.; Bin, H.; Zhang, Z G.; Li, Y.; Wei, Z.; Zhou, E. Simultaneously achieved high open-circuit voltage and efficient charge generation by fine-tuning chargetransfer driving force in nonfullerene polymer solar cells. Adv. Funct. Mater. 2017, 28, 1704507.

    Article  CAS  Google Scholar 

  25. Xu, Y.; Cui, Y.; Yao, H.; Zhang, T.; Zhang, J.; Ma, L.; Wang, J.; Wei, Z.; Hou, J. A New conjugated polymer that enables the integration of photovoltaic and light-emitting functions in one device. Adv. Mater. 2021, 33, 2101090.

    Article  CAS  Google Scholar 

  26. Menke, S. M.; Cheminal, A.; Conaghan, P.; Ran, N. A.; Greehnam, N. C.; Bazan, G. C.; Nguyen, T. Q.; Rao, A.; Friend, R. H. Order enables efficient electron-hole separation at an organic heterojunction with a small energy loss. Nat. Commun. 2018, 9, 277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Beuel, S.; Hartnagel, P.; Kirchartz, T. The influence of photo-induced space charge and energetic disorder on the indoor and outdoor performance of organic solar cells. Adv. Theor. Simul. 2021, 4, 2000319.

    Article  CAS  Google Scholar 

  28. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  PubMed  CAS  Google Scholar 

  29. Antony, A.; Murali, K. V.; Manoj, R.; Jayaraj, M. K. The effect of the pH value on the growth and properties of chemical-bath-deposited ZnS thin films. Mater. Chem. Phys. 2005, 90, 106.

    Article  CAS  Google Scholar 

  30. Göhler, C.; Wagenpfahl, A.; Deibel, C. Nongeminate recombination in organic solar cells. Adv. Electron. Mater. 2018, 4, 1700505.

    Article  CAS  Google Scholar 

  31. Yuan, J.; Zhang, C.; Chen, H.; Zhu, C.; Cheung, S. H.; Qiu, B.; Cai, F.; Wei, Q.; Liu, W.; Yin, H.; Zhang, R.; Zhang, J.; Liu, Y.; Zhang, H.; Liu, W.; Peng, H.; Yang, J.; Meng, L.; Gao, F.; So, S.; Li, Y.; Zou, Y. Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Sci. China Chem. 2020, 63, 1159.

    Article  CAS  Google Scholar 

  32. Zhang, M.; Zhu, L.; Hao, T.; Zhou, G.; Qiu, C.; Zhao, Z.; Hartmann, N.; Xiao, B.; Zou, Y.; Feng, W.; Zhu, H.; Zhang, M.; Zhang, Y.; Li, Y.; Russell, T. P.; Liu, F. High-efficiency organic photovoltaics using eutectic acceptor fibrils to achieve current amplification. Adv. Mater. 2021, 33, 2007177.

    Article  CAS  Google Scholar 

  33. Zhong, Y.; Trinh, M. T.; Chen, R.; Purdum, G. E.; Khlyabich, P. P.; Sezen, M.; Oh, S.; Zhu, H.; Fowler, B.; Zhang, B.; Wang, W.; Nam, C. Y.; Sfeir, M. Y.; Black, C. T.; Steigerwald, M. L.; Loo, Y. L.; Ng, F.; Zhu, X. Y.; Nuckolls, C. Molecular helices as electron acceptors in highperformance bulk heterojunction solar cells. Nat. Commun. 2015, 6, 8242.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, R.; Zhang, C.; Li, Q.; Zhang, Z.; Wang, X.; Xiao, M. Charge separation from an intra-moiety intermediate state in the highperformance PM6:Y6 organic photovoltaic blend. J. Am. Chem. Soc. 2020, 142, 12751.

    Article  CAS  PubMed  Google Scholar 

  35. Kaake, L. G.; Moses, D.; Heeger, A. J. Coherence and uncertainty in nanostructured organic photovoltaics. J. Phys. Chem. Lett. 2013, 4, 2264.

    Article  CAS  Google Scholar 

  36. Gao, J.; Wang, J.; Xu, C.; Hu, Z.; Ma, X.; Zhang, X.; Niu, L.; Zhang, J.; Zhang, F. A Critical review on efficient thick-film organic solar cells. Solar RRL 2020, 4, 2000364.

    Article  CAS  Google Scholar 

  37. Zhang, Y.; Feng, H.; Meng, L.; Wang, Y.; Chang, M.; Li, S.; Guo, Z.; Li, C.; Zheng, N.; Xie, Z.; Wan, X.; Chen, Y. High performance thick-film nonfullerene organic solar cells with efficiency over 10% and active layer thickness of 600 nm. Adv. Energy Mater. 2019, 9, 1902688.

    Article  CAS  Google Scholar 

  38. Chaturvedi, N.; Gasparini, N.; Corzo, D.; Bertrandie, J.; Wehbe, N.; Troughton, J.; Baran, D. All slot-die coated non-fullerene organic solar cells with PCE 11%. Adv. Funct. Mater. 2021, 31, 2009996.

    Article  CAS  Google Scholar 

  39. Wang, G.; Adil, M. A.; Zhang, J.; Wei, Z. Large-area organic solar cells: material requirements, modular designs, and printing methods. Adv. Mater. 2019, 31, 1805089.

    Article  CAS  Google Scholar 

  40. Sun, Y.; Liu, T.; Kan, Y.; Gao, K.; Tang, B.; Li, Y. Flexible organic solar cells: progress and challenges. Small Sci. 2021, 1, 2100001.

    Article  Google Scholar 

  41. Distler, A.; Brabec, C. J.; Egelhaaf, H. J. Organic photovoltaic modules with new world record efficiencies. Prog. Photovolt. Res. Appl. 2020, 29, 24–31.

    Article  Google Scholar 

  42. Dong, X.; Jiang, Y.; Sun, L.; Qin, F.; Zhou, X.; Lu, X.; Wang, W.; Zhou, Y. Large-area organic solar modules with efficiency over 14%. Adv. Funct. Mater. 2021, 32, 2110209.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52003275, 22075301, 22122905 and 52120105005). J. H. Hou was supported by the Key Research Program of the Chinese Academy of Sciences (No. XDPB13) and the Bureau of International Cooperation Chinese Academy of Sciences (No. 121111KYSB20200043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Feng Yao or Jian-Hui Hou.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Yao, HF., Xu, Y. et al. 100 cm2 Organic Photovoltaic Cells with 23% Efficiency under Indoor Illumination. Chin J Polym Sci 40, 979–988 (2022). https://doi.org/10.1007/s10118-022-2761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2761-x

Keywords

Navigation