Skip to main content
Log in

Double-Cable Conjugated Polymers with Fullerene Pendant for Single-Component Organic Solar Cells

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this work, the “functionalization-polymerization” (FP) method has been used to construct fullerene-contained double-cable conjugated polymers with “donor-acceptor” backbones. It was realized via synthesizing a fullerene-contained monomer and performing Stille polymerization. With this method, a series of double-cable conjugated polymers with different fullerene contents were developed and applied into single-component organic solar cells. The power conversion efficiencies (PCEs) based on these polymers increased from 0.71% to 1.71% with the enhanced fullerene contents. The relatively low PCEs might be originated from the poor microstructure in these polymers. These new conjugated polymers with molecular heterojunction would show potential application in organic electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 2005, 15, 1617–1622.

    Article  CAS  Google Scholar 

  2. Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868–5923.

    Article  CAS  PubMed  Google Scholar 

  3. Dou, L.; Liu, Y.; Hong, Z.; Li, G.; Yang, Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 2015, 115, 12633–12665.

    Article  CAS  PubMed  Google Scholar 

  4. Yang, H.; Wu, Y.; Dong, Y.; Cui, C.; Li, Y. Random polymer donor for high-performance polymer solar cells with efficiency over 14%. ACS Appl. Mater. Interfaces 2019, 11, 40339–40346.

    Article  CAS  PubMed  Google Scholar 

  5. Howard, J. B.; Thompson, B. C. Design of random and semi-random conjugated polymers for organic solar cells. Macromol. Chem. Phys. 2017, 218, 1700255.

    Article  CAS  Google Scholar 

  6. Wu, M.; Shi, L.; Hu, Y.; Chen, L.; Hu, T.; Zhang, Y.; Yuan, Z.; Chen, Y. Additive-free non-fullerene organic solar cells with random copolymers as donors over 9% power conversion efficiency. Chin. Chem. Lett. 2019, 30, 1161–1167.

    Article  CAS  Google Scholar 

  7. Wu, Y.; Guo, J.; Wang, W.; Chen, Z.; Chen, Z.; Sun, R.; Wu, Q.; Wang, T.; Hao, X.; Zhu, H.; Min, J. A conjugated donor-acceptor block copolymer enables over 11% efficiency for single-component polymer solar cells. Joule 2021, 5, 1800–1815.

    Article  CAS  Google Scholar 

  8. Xu, W.; Zhang, M.; Xiao, J.; Zeng, M.; Ye, L.; Weng, C.; Zhao, B.; Zhang, J.; Tan, S. Improved photovoltaic properties of pm6-based terpolymer donors containing benzothiadiazole with a siloxane-terminated side chain. Polym. Chem. 2020, 11, 6178–6186.

    Article  CAS  Google Scholar 

  9. Lee, Y.; Gomez, E. D. Challenges and opportunities in the development of conjugated block copolymers for photovoltaics. Macromolecules 2015, 48, 7385–7395.

    Article  CAS  Google Scholar 

  10. Schraff, S.; Maity, S.; Schleeper, L.; Dong, Y.; Lucas, S.; Bakulin, A. A.; von Hauff, E.; Pammer, F. All-conjugated donor-acceptor block copolymers featuring a pentafulvenyl-polyisocyanide-acceptor. Polym. Chem. 2020, 11, 1852–1859.

    Article  CAS  Google Scholar 

  11. Bendejacq, D.; Ponsinet, V.; Joanicot, M.; Airiau, M. Chemical tuning of the microphase separation in diblock copolymers from controlled radical polymerization. Macromolecules 2003, 36, 7289–7295.

    Article  CAS  Google Scholar 

  12. Yang, C.; Lee, J. K.; Heeger, A. J.; Wudl, F. Well-defined donor-acceptor rod-coil diblock copolymers based on P3HT containing C60: the morphology and role as a surfactant in bulk-heterojunction solar cells. J. Mater. Chem. 2009, 19, 5416–5423.

    Article  CAS  Google Scholar 

  13. Wang, J.; Higashihara, T. Synthesis of all-conjugated donor-acceptor block copolymers and their application in all-polymer solar cells. Polym. Chem. 2010, 4, 5518–5526.

    Article  CAS  Google Scholar 

  14. Rahmanudin, A.; Yao, L.; Sekar, A.; Cho, H. H.; Liu, Y.; Lhermitte, C. R.; Sivula, K. Fully conjugated donor-acceptor block copolymers for organic photovoltaics via Heck-Mizoroki coupling. ACS Macro Lett. 2019, 8, 134–139.

    Article  CAS  PubMed  Google Scholar 

  15. Park, C. G.; Park, S. H.; Kim, Y.; Nguyen, T. L.; Woo, H. Y.; Kang, H.; Yoon, H. J.; Park, S.; Cho, M. J.; Choi, D. H. Facile one-pot polymerization of a fully conjugated donor-acceptor block copolymer and its application in efficient single component polymer solar cells. J. Mater. Chem. A 2019, 7, 21280–21289.

    Article  CAS  Google Scholar 

  16. Park, S. H.; Kim, Y.; Kwon, N. Y.; Lee, Y. W.; Woo, Han, Y.; Chae, W. S.; Park, S.; Cho, M. J.; Choi, D. H. Significantly improved morphology and efficiency of nonhalogenated solvent-processed solar cells derived from a conjugated donor-acceptor block copolymer. Adv. Sci. 2020, 7, 1902470.

    Article  CAS  Google Scholar 

  17. Roncali, J.; Grosu, I. The dawn of single material organic solar cells. Adv. Sci. 2019, 6, 1801026.

    Article  CAS  Google Scholar 

  18. Liang, S.; Jiang, X.; Xiao, C.; Li, C.; Li, W. Double-cable conjugated polymers with pendant rylene diimides for single-component organic solar cells. Acc. Chem. Res. 2021, 54, 2227–2237.

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto, S.; Yasuda, H.; Ohkita, H.; Benten, H.; Ito, S.; Miyanishi, S.; Tajima, K.; Hashimoto, K. Charge generation and recombination in fullerene-attached poly(3-hexylthiophene)-based diblock copolymer films. J. Phys. Chem. C 2014, 118, 10584–10589.

    Article  CAS  Google Scholar 

  20. Pierini, F.; Lanzi, M.; Nakielski, P.; Pawłowska, S.; Urbanek, O.; Zembrzycki, K.; Kowalewski, T. A. Single-material organic solar cells based on electrospun fullerene-grafted polythiophene nanofibers. Macromolecules 2017, 50, 4972–4981.

    Article  CAS  Google Scholar 

  21. Iftikhar, S.; Aslam, S.; Butt, N. Z.; Ashraf, R. S.; Yameen, B. Prato reaction derived polythiophene/C60 donor-acceptor double cable polymer, fabrication of photodetectors and evaluation of photocurrent generation. J. Mater. Chem. C 2020, 8, 17365–17373.

    Article  CAS  Google Scholar 

  22. Chen, P.; Nakano, K.; Suzuki, K.; Hashizume, D.; Koganezawa, T.; Tajima, K. Organic solar cells with controlled nanostructures based on microphase separation of fullerene-attached thiophene-selenophene heteroblock copolymers. ACS Appl. Mater. Interfaces 2017, 9, 4758–4768.

    Article  CAS  PubMed  Google Scholar 

  23. Miyanishi, S.; Zhang, Y.; Hashimoto, K.; Tajima, K. Controlled synthesis of fullerene-attached poly(3-alkylthiophene)-based copolymers for rational morphological design in polymer photovoltaic devices. Macromolecules 2012, 45, 6424–6437.

    Article  CAS  Google Scholar 

  24. Miyanishi, S.; Zhang, Y.; Tajima, K.; Hashimoto, K. Fullerene attached all-semiconducting diblock copolymers for stable single-component polymer solar cells. Chem. Commun. 2010, 46, 6723–6725.

    Article  CAS  Google Scholar 

  25. Tan, Z.; Hou, J.; He, Y.; Zhou, E.; Li, Y. Synthesis and photovoltaic properties of a donor-acceptor double-cable polythiophene with high content of C60 pendant. Macromolecules 2007, 40, 1868–1873.

    Article  CAS  Google Scholar 

  26. He, Y.; Li, N.; Brabec, C. J. Single-component organic solar cells with competitive performance. Org. Mater. 2021, 03, 228–244.

    Article  CAS  Google Scholar 

  27. Roncali, J. Single material solar cells: The next frontier for organic photovoltaics? Adv. Energy Mater. 2011, 1, 147–160.

    Article  CAS  Google Scholar 

  28. Yu, P.; Feng, G.; Li, J.; Li, C.; Xu, Y.; Xiao, C.; Li, W. A selenophene substituted double-cable conjugated polymer enables efficient single-component organic solar cells. J. Mater. Chem. C 2020, 8, 2790–2797.

    Article  CAS  Google Scholar 

  29. Jiang, X. D.; Yang, J. J.; Karuthedath, S; Li, J.; Lai, W.; Li, C.; Xiao, C.; Ye, L.; Mai, Z.; Tang, Z.; Laquai, F.; Li, W. Miscibility-controlled phase separation in double-cable conjugated polymers for single-component organic solar cells with efficiencies over 8%. Angew. Chem. Int. Ed. 2020, 59, 21683–21692.

    Article  CAS  Google Scholar 

  30. Yang, F.; Li, J.; Li, C.; Li, W. Improving electron transport in a double-cable conjugated polymer via parallel perylenetriimide design. Macromolecules 2019, 52, 3689–3696.

    Article  CAS  Google Scholar 

  31. Liang, S.; Xu, Y.; Li, C.; Li, J.; Wang, D.; Li, W. Realizing lamellar nanophase separation in a double-cable conjugated polymer via a solvent annealing process. Polym. Chem. 2019, 10, 4584–4592.

    Article  CAS  Google Scholar 

  32. Feng, G.; Li, J.; He, Y.; Zheng, W.; Wang, J.; Li, C.; Tang, Z.; Osvet, A.; Li, N.; Brabec, C. J.; Li, Y.; Yan, H.; Li, W. Thermal-driven phase separation of double-cable polymers enables efficient single-component organic solar cells. Joule 2019, 3, 1765–1781.

    Article  CAS  Google Scholar 

  33. Yang, F.; Wang, X.; Feng, G.; Ma, J.; Li, C.; Li, J.; Ma, W.; Li, W. A new strategy for designing polymer electron acceptors: electronrich conjugated backbone with electron-deficient side units. Sci. China Chem. 2018, 61, 824–829.

    Article  CAS  Google Scholar 

  34. Lai, W.; Li, C.; Zhang, J., Yang, F.; Colberts, F. J. M.; Guo, B.; Wang, Q. M.; Li, M.; Zhang, A.; Janssen, R. A. J.; Zhang, M.; Li, W. Diketopyrrolopyrrole-based conjugated polymers with perylene bisimide side chains for single-component organic solar cells. Chem. Mater. 2017, 29, 7073–7077.

    Article  CAS  Google Scholar 

  35. Feng, G.; Li, J.; Colberts, F. J. M.; Li, M.; Zhang, J.; Yang, F.; Jin, Y.; Zhang, F.; Janssen, R. A. J.; Li, C.; Li, W. “Double-cable” conjugated polymers with linear backbone toward high quantum efficiencies in single-component polymer solar cells. J. Am. Chem. Soc. 2017, 139, 18647–18656.

    Article  CAS  PubMed  Google Scholar 

  36. Li, S.; Yuan, X.; Zhang, Q.; Li, B.; Li, Y.; Sun, J.; Feng, Y.; Zhang, X.; Wu, Z.; Wei, H.; Wang, M.; Hu, Y.; Zhang, Y.; Woo, H. Y.; Yuan, J.; Ma, W. Narrow-bandgap single-component polymer solar cells with approaching 9% efficiency. Adv. Mater. 2021, 33, 2101295.

    Article  CAS  Google Scholar 

  37. Liu, Y.; Liu, B.; Ma, C. Q.; Huang, F.; Bo, Z. Recent progress in organic solar cells (part i material science). Sci. China Chem. 2022, 65, 224–268.

    Article  CAS  Google Scholar 

  38. He, Y.; Heumüller, T.; Lai, W.; Feng, G.; Classen, A.; Du, X.; Liu, C.; Li, W.; Li, N.; Brabec, C. J. Evidencing excellent thermal- and photostability for single-component organic solar cells with inherently built-in microstructure. Adv. Energy Mater. 2019, 9, 1900409.

    Article  CAS  Google Scholar 

  39. Xie, C. C.; Jiang, X. D.; Zhu, Q. L.; Wang, D.; Xiao, C.; Liu, C.; Ma, W.; Chen, Q.; Li, W. Mechanical robust flexible single-component organic solar cells. Small Methods 2021, 5, 2100481.

    Article  CAS  Google Scholar 

  40. Benincori, T.; Brenna, E.; Sannicolò, F.; Trimarco, L.; Sozzani, P.; Zotti, G. The first “charm bracelet” conjugated polymer: an electroconducting polythiophene with covalently bound fullerene moieties. Angew. Chem. Int. Ed. 1996, 35, 648–651.

    Article  CAS  Google Scholar 

  41. Jousselme, B.; Blanchard, P.; Levillain, E.; de Bettignies, R.; Roncali, J. Electrochemical synthesis of C60-derivatized poly(thiophene)s from tailored precursors. Macromolecules 2003, 36, 3020–3025.

    Article  CAS  Google Scholar 

  42. Cravino, A.; Zerza, G.; Maggini, M.; Bucella, S.; Svensson, M; Andersson, M. R.; Neugebauer, H.; Sariciftci, N. S. A novel polythiophene with pendant fullerenes: toward donor/acceptor double-cable polymers. Chem. Commun. 2000, 2487–2488.

  43. Cravino, A.; Zerza, G.; Neugebauer, H.; Maggini, M.; Sariciftci, N. S. Electrochemical and photophysical properties of a novel polythiophene with pendant fulleropyrrolidine moieties: toward “double cable” polymers for optoelectronic devices. J. Phys. Chem. B 2002, 106, 70–76.

    Article  CAS  Google Scholar 

  44. Ramos, A. M.; Rispens, M. T.; van Duren, J. K.; Hummelen, J. C.; Jassen, R. A. J. Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendant fullerenes. J. Am. Chem. Soc. 2001, 123, 6714–6715.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, F. L.; Svensson, M.; Andersson, M. R.; Maggini, M.; Inganäs, O. Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes. Adv. Mater. 2001, 13, 1871–1871.

    Article  CAS  Google Scholar 

  46. Jia, J.; Huang, Q.; Jia, T.; Zhang, K.; Zhang, J.; Miao, J.; Huang, F.; Yang, C. Fine-tuning batch factors of polymer acceptors enables a binary all-polymer solar cell with high efficiency of 16.11%. Adv. Energy Mater. 2022, 12, 2103193.

    Article  CAS  Google Scholar 

  47. Wang, J.; Jiang, X.; Wu, H., Li, J.; Yi, Y.; Feng, X.; Ma, Z.; Li, W.; Vandewal, K.; Tang, Z. Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nat. Commun. 2021, 12, 6679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang, X. D.; Yang, J. J.; Karuthedath, S; Li, J.; Lai, W.; Li, C.; Xiao, C.; Ye, L.; Mai, Z.; Tang, Z.; Laquai, F.; Li, W. Miscibility-controlled phase separation in double-cable conjugated polymers for single-component organic solar cells with efficiencies over 8%. Angew. Chem. Int. Ed. 2020, 59, 21683–21692.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Beijing Natural Science Foundation of China. (No. JQ21006) and the National Natural Science Foundation of China (Nos. 92163128, 52073016, 51773207, 21905018 and 21905158) of China. This work was further financially supported by the Fundamental Research Funds for the Central Universities (Nos. buctrc201828 and XK1802-2), the opening Foundation of State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (No. oic-202201006), and Jiangxi Provincial Department of Science and Technology (No. 20192ACB20009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Hua Xu, Qiao-Mei Chen or Wei-Wei Li.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, BQ., Xu, YH., Liu, F. et al. Double-Cable Conjugated Polymers with Fullerene Pendant for Single-Component Organic Solar Cells. Chin J Polym Sci 40, 898–904 (2022). https://doi.org/10.1007/s10118-022-2732-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2732-2

Keywords

Navigation