Skip to main content
Log in

Insertion of Supramolecular Segments into Covalently Crosslinked Polyurethane Networks towards the Fabrication of Recyclable Elastomers

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Thermoset plastics have become one of the most important chemical products in the world. The consequent problem is that although the thermosets possess excellent performance in mechanical strength, they cannot be reprocessed because of the internal permanent network structures. Optimizing the molecular design of thermosets is one of the most feasible ways to improve their recyclability. Here we present a facile and robust strategy to engineer the reprocessability of thermoset polyurethanes without compromising their mechanical toughness and chemical resistance via adding supramolecular additives during the polymer synthesis process. By using a multiple hydrogen bonding moiety as the model supramolecular additive, we demonstrate that the mechanical properties, recyclability, and chemical resistance of the crosslinked polyurethanes can be precisely controlled by adjusting the contents of the supramolecular additive. Systematic studies on the relations between molecular design and material properties are performed, and the optimized polyurethane network with a moderate amount of the supramolecular additive achieves the right balance between the robustness and recyclability. This work provides a cost-effective and practical way to chemically engineer thermoset plastics, aiming to enable the recycling of mechanically tough and chemically stable polymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y.; Zhang, L.; Yang, G.; Yao, Y.; Wei, X.; Pan, T.; Wu, J.; Tian, M.; Yin, P. Recent advances in recyclable thermosets and thermoset composites based on covalent adaptable networks. J. Mater. Sci. Technol. 2021, 92, 75–87.

    Article  Google Scholar 

  2. Zhu, J. B.; Watson, E. M.; Tang, J.; Chen, E. Y. X. A synthetic polymer system with repeatable chemical recyclability. Science 2018, 360, 398–403.

    Article  CAS  PubMed  Google Scholar 

  3. Long, T. E. Toward recyclable thermosets. Science 2014, 344, 706–707.

    Article  CAS  PubMed  Google Scholar 

  4. Liu, J.; Wang, S.; Peng, Y.; Zhu, J.; Zhao, W.; Liu, X. Advances in sustainable thermosetting resins: from renewable feedstock to high performance and recyclability. Prog. Polym. Sci. 2021, 113, 101353.

    Article  CAS  Google Scholar 

  5. Jehanno, C.; Sardon, H. A step towards truly recyclable plastics. Nature 2019, 568, 467–468.

    Article  CAS  PubMed  Google Scholar 

  6. Shieh, P.; Zhang, W.; Husted, K. E. L.; Kristufek, S. L.; Xiong, B.; Lundberg, D. J.; Lem, J.; Veysset, D.; Sun, Y.; Nelson, K. A.; Plata, D. L.; Johnson, J. A. Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 2020, 583, 542–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968.

    Article  CAS  PubMed  Google Scholar 

  8. Millican, J. M.; Agarwal, S. Plastic pollution: a material problem? Macromolecules 2021, 54, 4455–4469.

    Article  CAS  Google Scholar 

  9. MacLeod, M.; Arp, H. P. H.; Tekman, M. B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295, 1698–1702.

    Article  CAS  PubMed  Google Scholar 

  11. Stubbins, A.; Law, K. L.; Muñoz, S. E.; Bianchi, T. S.; Zhu, L. Plastics in the earth system. Science 2021, 373, 51–55.

    Article  CAS  PubMed  Google Scholar 

  12. Sheppard, D. T.; Jin, K.; Hamachi, L. S.; Dean, W.; Fortman, D. J.; Ellison, C. J.; Dichtel, W. R. Reprocessing postconsumer polyurethane foam using carbamate exchange catalysis and twin-screw extrusion. ACS Cent. Sci. 2020, 6, 921–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luong, D. X.; Bets, K. V.; Algozeeb, W. A.; Stanford, M. G.; Kittrell, C.; Chen, W.; Salvatierra, R. V.; Ren, M.; McHugh, E. A.; Advincula, P. A.; Wang, Z.; Bhatt, M.; Guo, H.; Mancevski, V.; Shahsavari, R.; Yakobson, B. I.; Tour, J. M. Gram-scale bottom-up flash graphene synthesis. Nature 2020, 577, 647–651.

    Article  CAS  PubMed  Google Scholar 

  14. Korley, L. T. J.; Epps, T. H.; Helms, B. A.; Ryan, A. J. Toward polymer upcycling-adding value and tackling circularity. Science 2021, 373, 66–69.

    Article  CAS  PubMed  Google Scholar 

  15. Zhong, Y.; Li, P.; Wang, X.; Hao, J. Amoeba-inspired reengineering of polymer networks. Green Chem. 2021, 23, 2496–2506.

    Article  CAS  Google Scholar 

  16. Wang, X.; Zhan, S.; Lu, Z.; Li, J.; Yang, X.; Qiao, Y.; Men, Y.; Sun, J. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv. Mater. 2020, 32, 2005759.

    Article  CAS  Google Scholar 

  17. Zhang, C.; Yang, Z.; Duong, N. T.; Li, X.; Nishiyama, Y.; Wu, Q.; Zhang, R.; Sun, P. Using dynamic bonds to enhance the mechanical performance: from microscopic molecular interactions to macroscopic properties. Macromolecules 2019, 52, 5014–5025.

    Article  CAS  Google Scholar 

  18. Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 2002, 41, 898–952.

    Article  Google Scholar 

  19. Ma, S.; Webster, D. C. Degradable thermosets based on labile bonds or linkages: a review. Prog. Polym. Sci 2018, 76, 65–110.

    Article  CAS  Google Scholar 

  20. Lu, X.; Bao, C.; Xie, P.; Guo, Z.; Sun, J. Solution-processable and thermostable super-strong poly(aryl ether ketone) supramolecular thermosets cross-linked with dynamic boroxines. Adv. Funct. Mater. 2021, 31, 2103061.

    Article  CAS  Google Scholar 

  21. Kuhl, N.; Bode, S.; Bose, R. K.; Vitz, J.; Seifert, A.; Hoeppener, S.; Garcia, S. J.; Spange, S.; van der Zwaag, S.; Hager, M. D.; Schubert, U. S. Acylhydrazones as reversible covalent crosslinkers for self-healing polymers. Adv. Funct. Mater 2015, 25, 3295–3301.

    Article  CAS  Google Scholar 

  22. Gao, Y.; Liu, W.; Zhu, S. Reversible shape memory polymer from semicrystalline poly(ethylene-co-vinyl acetate) with dynamic covalent polymer networks. Macromolecules 2018, 51, 8956–8963.

    Article  CAS  Google Scholar 

  23. Fortman, D. J.; Sheppard, D. T.; Dichtel, W. R. Reprocessing cross-linked polyurethanes by catalyzing carbamate exchange. Macromolecules 2016, 52, 6330–6335.

    Article  Google Scholar 

  24. Zhong, Y.; Li, P.; Hao, J.; Wang, X. Bioinspired self-healing of kinetically inert hydrogels mediated by chemical nutrient supply. ACS Appl. Mater. Interfaces 2020, 12, 6471–6478.

    Article  CAS  PubMed  Google Scholar 

  25. Mocny, P.; Klok, H. A. Reversibly cross-linking polymer brushes using interchain disulfide bonds. Macromolecules 2020, 53, 731–740.

    Article  CAS  Google Scholar 

  26. Cui, C.; Chen, X.; Ma, L.; Zhong, Q.; Li, Z.; Mariappan, A.; Zhang, Q.; Cheng, Y.; He, G.; Chen, X.; Dong, Z.; An, L.; Zhang, Y. Polythiourethane covalent adaptable networks for strong and reworkable adhesives and fully recyclable carbon fiber-reinforced composites. ACS Appl. Mater. Interfaces 2020, 12, 47975–47983.

    Article  CAS  PubMed  Google Scholar 

  27. Post, W.; Susa, A.; Blaauw, R.; Molenveld, K.; Knoop, R. J. I. A review on the potential and limitations of recyclable thermosets for structural applications. Polym. Rev. 2019, 60, 359–388.

    Article  Google Scholar 

  28. Yin, Z.; Song, G.; Jiao, Y.; Zheng, P.; Xu, J. F.; Zhang, X. Dissipative supramolecular polymerization powered by light. CCS Chem. 2019, 1, 335–342.

    Article  CAS  Google Scholar 

  29. Zhu, J.; Chen George, Y.; Yu, L.; Xu, H.; Liu, X.; Sun, J. Mechanically strong and highly stiff supramolecular polymer composites repairable at ambient conditions. CCS Chem. 2019, 2, 280–292.

    Article  Google Scholar 

  30. Zhang, S.; Qin, B.; Xu, J. F.; Zhang, X. Multi-recyclable shape memory supramolecular polyurea with long cycle life and superior stability. ACS Mater. Lett. 2021, 5, 331–336.

    Article  Google Scholar 

  31. Sun, P.; Li, Y.; Qin, B.; Xu, J. F.; Zhang, X. Super strong and multi-reusable supramolecular epoxy hot melt adhesives. ACS Mater. Lett. 2021, 3, 1003–1009.

    Article  CAS  Google Scholar 

  32. Du, L.; Xu, Z. Y.; Fan, C. J.; Xiang, G.; Yang, K. K.; Wang, Y. Z. A fascinating metallo-supramolecular polymer network with thermal/magnetic/light-responsive shape-memory effects anchored by Fe3O4 nnnoparticles. Macromolecules 2018, 51, 705–715.

    Article  CAS  Google Scholar 

  33. An, N.; Wang, X.; Li, Y.; Zhang, L.; Lu, Z.; Sun, J. Healable and mechanically super-strong polymeric composites derived from hydrogen-bonded polymeric complexes. Adv. Mater. 2019, 31, 1904882.

    Article  CAS  Google Scholar 

  34. Liu, X.; Wu, D.; Wang, H.; Wang, Q. Self-recovering tough gel electrolyte with adjustable supercapacitor performance. Adv. Mater. 2014, 26, 4370–4375.

    Article  CAS  PubMed  Google Scholar 

  35. Luo, F.; Sun, T. L.; Nakajima, T.; Kurokawa, T.; Ihsan, A. B.; Li, X.; Guo, H.; Gong, J. P. Free reprocessability of tough and self-healing hydrogels based on polyion complex. ACS Macro Lett. 2015, 4, 961–964.

    Article  CAS  Google Scholar 

  36. Xu, S.; Chang, P.; Zhao, B.; Adeel, M.; Zheng, S. Formation of poly(ε-caprolactone) networks via supramolecular hydrogen bonding interactions. Chinese J. Polym. Sci. 2019, 37, 197–207.

    Article  CAS  Google Scholar 

  37. Shi, J.; Zhao, N.; Yan, D.; Song, J.; Fu, W.; Li, Z. Design of a mechanically strong and highly stretchable thermoplastic silicone elastomer based on coulombic interactions. J. Mater. Chem. A 2020, 8, 5943–5951.

    Article  CAS  Google Scholar 

  38. Li, Z.; Zhu, Y. L.; Niu, W.; Yang, X.; Jiang, Z.; Lu, Z. Y.; Liu, X.; Sun, J. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater. 2021, 33, 2101498.

    Article  CAS  Google Scholar 

  39. Qin, B.; Zhang, S.; Sun, P.; Tang, B.; Yin, Z.; Cao, X.; Chen, Q.; Xu, J. F.; Zhang, X. Tough and multi-recyclable cross-linked supramolecular polyureas via incorporating noncovalent bonds into main-chains. Adv. Mater. 2020, 32, 2000096.

    Article  CAS  Google Scholar 

  40. Street, D. P.; Ledford, W. K.; Allison, A. A.; Patterson, S.; Pickel, D. L.; Lokitz, B. S.; Messman, J. M.; Kilbey, S. M. Self-complementary multiple hydrogen-bonding additives enhance thermomechanical properties of 3D-printed PMMA structures. Macromolecules 2019, 52, 5574–5582.

    Article  CAS  Google Scholar 

  41. Söntjens, S. H. M.; Sijbesma, R. P.; van Genderen, M. H. P.; Meijer, E. W. Stability and lifetime of quadruply hydrogen bonded 2-ureido-4[1H]-pyrimidinone dimers. J. Am. Chem. Soc. 2000, 122, 7487–7493.

    Article  Google Scholar 

  42. Li, T.; Zheng, T. Z.; Guo, Z. X.; Xu, J.; Guo, B. H. A well-defined hierarchical hydrogen bonding strategy to polyureas with simultaneously improved strength and toughness. Chinese J. Polym. Sci. 2019, 37, 1257–1266.

    Article  CAS  Google Scholar 

  43. Li, X.; Li, J.; Wei, W.; Yang, F.; Wu, M.; Wu, Q.; Xie, T.; Chen, Y. Enhanced mechanochemiluminescence from end-functionalized polyurethanes with multiple hydrogen bonds. Macromolecules 2021, 54, 1557–1563.

    Article  CAS  Google Scholar 

  44. Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 1997, 278, 1601–1604.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, L.; Qiu, T.; Sun, X.; Guo, L.; He, L.; Ye, J.; Li, X. Achievement of both mechanical properties and intrinsic self-healing under body temperature in polyurethane elastomers: a synthesis strategy from waterborne polymers. Polymers 2020, 12, 989.

    Article  CAS  PubMed Central  Google Scholar 

  46. Zhang, X.; Wang, Y.; Sun, S.; Hou, L.; Wu, P.; Wu, Z.; Zheng, Q. A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction. Macromolecules 2018, 51, 8136–8146.

    Article  CAS  Google Scholar 

  47. Guo, Y.; Qu, X.; Hu, Z.; Zhu, J.; Niu, W.; Liu, X. Highly elastic and mechanically robust polymer electrolytes with high ionic conductivity and adhesiveness for high-performance lithium metal batteries. J. Mater. Chem. A 2021, 9, 13597–13607.

    Article  CAS  Google Scholar 

  48. Liu, X.; Zhong, M.; Shi, F.; Xu, H.; Xie, X. Multi-bond network hydrogels with robust mechanical and self-healable properties. Chinese J. Polym. Sci. 2017, 35, 1253–1267.

    Article  CAS  Google Scholar 

  49. Song, Y.; Liu, Y.; Qi, T.; Li, G. Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angew. Chem. Int. Ed. 2018, 57, 13838–13842.

    Article  CAS  Google Scholar 

  50. Zheng, N.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem. Int. Ed. 2013, 55, 11421–11425.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 21975145). The authors acknowledge the assistance of Shandong University Structural Constituent and Physical Property Research Facilities/SDU SC&PP Research Facilities for polymer characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Wang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2651_MOESM1_ESM.pdf

Insertion of Supramolecular Segments into Covalently Crosslinked Polyurethane Networks towards the Fabrication of Recyclable Elastomers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LP., Zhang, MG., Hao, JC. et al. Insertion of Supramolecular Segments into Covalently Crosslinked Polyurethane Networks towards the Fabrication of Recyclable Elastomers. Chin J Polym Sci 40, 321–330 (2022). https://doi.org/10.1007/s10118-022-2651-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2651-2

Keywords

Navigation