Skip to main content
Log in

Safety-enhanced Polymer Electrolytes with High Ambient-temperature Lithium-ion Conductivity Based on ABA Triblock Copolymers

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Liquid electrolytes used in lithium-ion batteries suffer from leakage, flammability, and lithium dendrites, making polymer electrolyte a potential alternative. Herein, a series of ABA triblock copolymers (ABA-x) containing a mesogen-jacketed liquid crystalline polymer (MJLCP) with a polynorbornene backbone as segment A and a second polynorbornene-based polymer having poly(ethylene oxide) (PEO) side chains as segment B were synthesized through tandem ring-opening metathesis polymerizations. The block copolymers can self-assemble into ordered morphologies at 200 °C. After doping of lithium salts and ionic liquid (IL), ABA-x self-assembles into cylindrical structures. The MJLCP segments with a high glass transition temperature and a stable liquid crystalline phase serve as physical crosslinking points, which significantly improve the mechanical performance of the polymer electrolytes. The ionic conductivity of ABA-x/lithium salt/IL is as high as 10−3 S·cm−1 at ambient temperature owing to the high IL uptake and the continuous phase of conducting PEO domains. The relationship between ionic conductivity and temperature fits the Vogel-Tamman-Fulcher (VTF) equation. In addition, the electrolyte films are flame retardant owing to the addition of IL. The polymer electrolytes with good safety and high ambient-temperature ionic conductivity developed in this work are potentially useful in solid lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2014, 7, 19.

    Article  PubMed  Google Scholar 

  2. Young, W. S.; Kuan, W. F.; Epps, I., Thomas, H. Block copolymer electrolytes for rechargeable lithium batteries. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1–16.

    Article  CAS  Google Scholar 

  3. Watanabe, T.; Inafune, Y.; Tanaka, M.; Mochizuki, Y.; Matsumoto, F.; Kawakami, H. Development of all-solid-state battery based on lithium ion conductive polymer nanofiber framework. J. Power Sources 2019, 423, 255–262.

    Article  CAS  Google Scholar 

  4. Mong Anh, L.; Kim, D. Solid electrolyte membrane prepared from poly(arylene ether sulfone)-g-poly(ethylene glycol) for lithium secondary battery. ACS Appl. Energy Mater. 2019, 2, 2585–2595.

    Article  CAS  Google Scholar 

  5. Zhang, X.; Li, L.; Fan, E.; Xue, Q.; Bian, Y.; Wu, F.; Chen, R. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem. Soc. Rev. 2018, 47, 7239–7302.

    Article  CAS  PubMed  Google Scholar 

  6. Sun, B.; Asfaw, H. D.; Rehnlund, D.; Mindemark, J.; Nyholm, L.; Edström, K.; Brandell, D. Toward solid-state 3D-microbatteries using functionalized polycarbonate-based polymer electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 2407–2413.

    Article  CAS  PubMed  Google Scholar 

  7. Ping, J.; Pan, H.; Hou, P. P.; Zhang, M. Y.; Wang, X.; Wang, C.; Chen, J.; Wu, D.; Shen, Z.; Fan, X. H. Solid polymer electrolytes with excellent high-temperature properties based on brush block copolymers having rigid side chains. ACS Appl. Mater. Interfaces 2017, 9, 6130–6137.

    Article  CAS  PubMed  Google Scholar 

  8. Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069.

    Article  CAS  Google Scholar 

  9. Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253.

    Article  CAS  Google Scholar 

  10. Wang, Y.; Zhong, W. H. Development of electrolytes towards achieving safe and high-performance energy-storage devices: a review. ChemElectroChem 2015, 2, 22–36.

    Article  Google Scholar 

  11. Kim, S.; Seo, M. Control of porosity in hierarchically porous polymers derived from hyper-crosslinked block polymer precursors. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 900–913.

    Article  CAS  Google Scholar 

  12. Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589.

    Article  CAS  Google Scholar 

  13. Meyer, W. H. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 1998, 10, 439–448.

    Article  CAS  PubMed  Google Scholar 

  14. Gadjourova, Z.; Andreev, Y. G.; Tunstall, D. P.; Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 2001, 412, 520–523.

    Article  CAS  PubMed  Google Scholar 

  15. Kishimoto, K.; Yoshio, M.; Mukai, T.; Yoshizawa, M.; Ohno, H.; Kato, T. Nanostructured anisotropic ion-conductive films. J. Am. Chem. Soc. 2003, 125, 3196–3197.

    Article  CAS  PubMed  Google Scholar 

  16. Guo, M.; Zhang, M.; He, D.; Hu, J.; Wang, X.; Gong, C.; Xie, X.; Xue, Z. Comb-like solid polymer electrolyte based on polyethylene glycol-grafted sulfonated polyether ether ketone. Electrochim. Acta 2017, 255, 396–404.

    Article  CAS  Google Scholar 

  17. Chakraborty, S.; Jiang, X.; Hoffman, Z. J.; Sethi, G. K.; Zhu, C.; Balsara, N. P.; Villaluenga, I. Reversible changes in the grain structure and conductivity in a block copolymer electrolyte. Macromolecules 2020, 53, 5455–5464.

    Article  CAS  Google Scholar 

  18. Ji, X.; Cao, M.; Fu, X.; Liang, R.; Le, A. N.; Zhang, Q.; Zhong, M. Efficient room-temperature solid-state lithium ion conductors enabled by mixed-graft block copolymer architectures. Giant 2020, 3, 100027.

    Article  Google Scholar 

  19. Phan, T. N. T.; Issa, S.; Gigmes, D. Poly(ethylene oxide)-based block copolymer electrolytes for lithium metal batteries. Polym. Int. 2019, 68, 7–13.

    Article  CAS  Google Scholar 

  20. Villaluenga, I.; Chen, X. C.; Devaux, D.; Hallinan, D. T.; Balsara, N. P. Nanoparticle-driven assembly of highly conducting hybrid block copolymer electrolytes. Macromolecules 2015, 48, 358–364.

    Article  CAS  Google Scholar 

  21. Jo, G.; Jeon, H.; Park, M. J. Synthesis of polymer electrolytes based on poly(ethylene oxide) and an anion-stabilizing hard polymer for enhancing conductivity and cation transport. ACS Macro Lett. 2015, 4, 225–230.

    Article  CAS  Google Scholar 

  22. Young, W.-S.; Albert, J. N. L.; Schantz, A. B.; Epps, T. H. Mixed-salt effects on the ionic conductivity of lithium-doped peocontaining block copolymers. Macromolucules 2011, 44, 8116–8123.

    Article  CAS  Google Scholar 

  23. Chopade, S. A.; Au, J. G.; Li, Z.; Schmidt, P. W.; Hillmyer, M. A.; Lodge, T. P. Robust polymer electrolyte membranes with high ambient-temperature lithium-ion conductivity via polymerization-induced microphase separation. ACS Appl. Mater. Interfaces 2017, 9, 14561–14565.

    Article  CAS  PubMed  Google Scholar 

  24. Yan, Y.; Kong, Q. R.; Sun, C. C.; Yuan, J. J.; Huang, Z.; Fang, L. F.; Zhu, B. K.; Song, Y. Z. Copolymer-assisted polypropylene separator for fast and uniform lithium ion transport in lithium-ion batteries. Chinese J. Polym. Sci. 2020, 38, 1313–1324.

    Article  CAS  Google Scholar 

  25. Liu, D.; Tang, Z.; Luo, L.; Yang, W.; Liu, Y.; Shen, Z.; Fan, X. H. Self-healing solid polymer electrolyte with high ion conductivity and super stretchability for all-solid zinc-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 36320–36329.

    Article  CAS  PubMed  Google Scholar 

  26. Wanakule, N. S.; Panday, A.; Mullin, S. A.; Gann, E.; Hexemer, A.; Balsara, N. P. Ionic conductivity of block copolymer electrolytes in the vicinity of order-disorder and order-order transitions. Macromolecules 2009, 42, 5642–5651.

    Article  CAS  Google Scholar 

  27. Cheng, S.; Smith, D. M.; Li, C. Y. How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes?. Macromolecules 2014, 47, 3978–3986.

    Article  CAS  Google Scholar 

  28. Sethi, G. K.; Chakraborty, S.; Zhu, C.; Schaible, E.; Villaluenga, I.; Balsara, N. P. Effect of crystallization of the polyhedral oligomeric silsesquioxane block on self-assembly in hybrid organic-inorganic block copolymers with salt. Giant 2021, 6, 100055.

    Article  CAS  Google Scholar 

  29. Wu, F.; Luo, L.; Tang, Z.; Liu, D.; Shen, Z.; Fan, X. H. Block copolymer electrolytes with excellent properties in a wide temperature range. ACS Appl. Energy Mater. 2020, 3, 6536–6543.

    Article  CAS  Google Scholar 

  30. Lopez, J.; Sun, Y.; Mackanic, D. G.; Lee, M.; Foudeh, A. M.; Song, M. S.; Cui, Y.; Bao, Z. A dual-crosslinking design for resilient lithium-ion conductors. Adv. Mater. 2018, 30, 1804142.

    Article  Google Scholar 

  31. Mackanic, D. G.; Michaels, W.; Lee, M.; Feng, D.; Lopez, J.; Qin, J.; Cui, Y.; Bao, Z. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte. Adv. Energy Mater. 2018, 8, 1800703.

    Article  Google Scholar 

  32. Kim, G. T.; Appetecchi, G. B.; Carewska, M.; Joost, M.; Balducci, A.; Winter, M.; Passerini, S. UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids. J. Power Sources 2010, 195, 6130–6137.

    Article  CAS  Google Scholar 

  33. Choudhury, S.; Mangal, R.; Agrawal, A.; Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 2015, 6, 10101.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Y. D.; Fan, X. H.; Shen, Z.; Zhou, Q. F. Thermoreversible ion gel with tunable modulus self-assembled by a liquid crystalline triblock copolymer in ionic liquid. Macromolecules 2015, 48, 4927–4935.

    Article  CAS  Google Scholar 

  35. Tang, Z.; Lyu, X.; Luo, L.; Shen, Z.; Fan, X. H. White-light-emitting AIE/Eu3+-doped ion gel with multistimuli-responsive properties. ACS Appl. Mater. Interfaces 2020, 45420–45428.

  36. Vatankhah-Varnosfaderani, M.; Keith, A. N.; Cong, Y.; Liang, H.; Rosenthal, M.; Sztucki, M.; Clair, C.; Magonov, S.; Ivanov, D. A.; Dobrynin, A. V.; Sheiko, S. S. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 2018, 359, 1509–1513.

    Article  CAS  PubMed  Google Scholar 

  37. Keith, A. N.; Vatankhah-Varnosfaderani, M.; Clair, C.; Fahimipour, F.; Dashtimoghadam, E.; Lallam, A.; Sztucki, M.; Ivanov, D. A.; Liang, H.; Dobrynin, A. V.; Sheiko, S. S. Bottlebrush bridge between soft gels and firm tissues. ACS Central Sci. 2020, 6, 413–419.

    Article  CAS  Google Scholar 

  38. Liang, H.; Wang, Z.; Dobrynin, A. V. Strain-adaptive self-assembled networks of linear-bottlebrush-linear copolymers. Macromolecules 2019, 52, 8617–8624.

    Article  CAS  Google Scholar 

  39. Cong, Y.; Vatankhah-Varnosfaderani, M.; Karimkhani, V.; Keith, A. N.; Leibfarth, F. A.; Martinez, M. R.; Matyjaszewski, K.; Sheiko, S. S. Understanding the synthesis of linear-bottlebrush-linear block copolymers: toward plastomers with well-defined mechanical properties. Macromolecules 2020, 53, 8324–8332.

    Article  CAS  Google Scholar 

  40. Tang, Z.; Lyu, X.; Xiao, A.; Shen, Z.; Fan, X. High-performance double-network ion gels with fast thermal healing capability via dynamic covalent bonds. Chem. Mater. 2018, 30, 7752–7759.

    Article  CAS  Google Scholar 

  41. Feng, L.; Wang, K.; Zhang, X.; Sun, X.; Li, C.; Ge, X.; Ma, Y. Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv. Funct. Mater. 2018, 28, 1704463.

    Article  Google Scholar 

  42. Gwee, L.; Choi, J. H.; Winey, K. I.; Elabd, Y. A. Block copolymer/ionic liquid films: the effect of ionic liquid composition on morphology and ion conduction. Polymer 2010, 51, 5516–5524.

    Article  CAS  Google Scholar 

  43. Shin, J. H.; Henderson, W. A.; Passerini, S. Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem. Commun. 2003, 5, 1016–1020.

    Article  CAS  Google Scholar 

  44. Tafur, J. P.; Fernández Romero, A. J. Electrical and spectroscopic characterization of PVDF-HFP and TFSI—ionic liquids-based gel polymer electrolyte membranes. Influence of ZnTf2 salt. J. Membr. Sci. 2014, 469, 499–506.

    Article  CAS  Google Scholar 

  45. Tsao, C. H.; Su, H. M.; Huang, H. T.; Kuo, P. L.; Teng, H. Immobilized cation functional gel polymer electrolytes with high lithium transference number for lithium ion batteries. J. Membr. Sci. 2018, 572, 382–389.

    Article  Google Scholar 

  46. Zhang, D. Z.; Ren, Y. Y.; Hu, Y.; Li, L.; Yan, F. Ionic liquid/poly(ionic liquid)-based semi-solid state electrolytes for lithium-ion batteries. Chinese J. Polym. Sci. 2020, 38, 506–513.

    Article  CAS  Google Scholar 

  47. Li, Z.; Wu, Z.; Mo, G.; Xing, X.; Liu, P. A small-angle X-ray scattering station at beijing synchrotron radiation facility. Instrum. Sci. Technol. 2014, 42, 128–141.

    Article  CAS  Google Scholar 

  48. Varlas, S.; Lawrenson, S. B.; Arkinstall, L. A.; O’Reilly, R. K.; Foster, J. C. Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog. Polym. Sci. 2020, 107, 101278.

    Article  CAS  Google Scholar 

  49. Xu, Y.; Zhang, S.; Liang, T.; Yao, Z.; Wang, X.; Gu, C.; Xia, X.; Tu, J. Porous polyamide skeleton-reinforced solid-state electrolyte: enhanced flexibility, safety, and electrochemical performance. ACS Appl. Mater. Interfaces 2021.

  50. Jia, H.; Onishi, H.; Wagner, R.; Winter, M.; Cekic-Laskovic, I. An intrinsically safe gel polymer electrolyte comprising flame retarding polymer matrix for lithium ion battery application. ACS Appl. Mater. Interfaces 2018, 10, 42348–42355.

    Article  CAS  PubMed  Google Scholar 

  51. Olmedo-Martínez, J. L.; Meabe, L.; Riva, R.; Guzmán-González, G.; Porcarelli, L.; Forsyth, M.; Mugica, A.; Calafel, I.; Müller, A. J.; Lecomte, P.; Jérôme, C.; Mecerreyes, D. Flame retardant polyphosphoester copolymers as solid polymer electrolyte for lithium batteries. Polym. Chem. 2021, 12, 3441–3450.

    Article  Google Scholar 

  52. Simone, P. M.; Lodge, T. P. Phase behavior and ionic conductivity of concentrated solutions of polystyrene-poly(ethylene oxide) diblock copolymers in an ionic liquid. ACS Appl. Mater. Interfaces 2009, 1, 2812–2820.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2018YFB0703702) and the National Natural Science Foundation of China (Nos. 21774001, 51725301 and 51921002). The authors gratefully acknowledge Synchrotron X-ray Beamline 1W2A in Beijing Synchrotron Radiation Facility (BSRF) and Synchrotron X-ray Beamline BL16B1 in Shanghai Synchrotron Radiation Facility (SSRF) for the assistance with the SAXS experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Hao Shen or Xing-He Fan.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information for

10118_2021_2648_MOESM1_ESM.pdf

Safety-enhanced Polymer Electrolytes with High Ambient-temperature Lithium-ion Conductivity Based on ABA Triblock Copolymers

Supplementary material, approximately 1.86 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Wu, F., Shen, ZH. et al. Safety-enhanced Polymer Electrolytes with High Ambient-temperature Lithium-ion Conductivity Based on ABA Triblock Copolymers. Chin J Polym Sci 40, 21–28 (2022). https://doi.org/10.1007/s10118-021-2648-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2648-2

Keywords

Navigation