Skip to main content
Log in

Facile Synthesis of Functional Poly(methyltriazolylcarboxylate)s by Solvent- and Catalyst-free Butynoate-Azide Polycycloaddition

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The copper-catalyzed and metal-free azide-alkyne click polymerizations have become efficient tools for polymer synthesis. However, the 1,3-dipolar polycycloadditions between internal alkynes and azides are rarely employed to construct functional polymers. Herein, the polycycloadditions of dibutynoate (1) and tetraphenylethene-containing diazides (2) were carried out at 100 °C for 12 h under solvent- and catalyst-free conditions, producing soluble poly(methyltriazolylcarboxylate)s (PMTCs) with high molecular weights in high yields. The resultant polymers were thermally stable with 5% weight loss temperatures up to 377 °C. The PMTCs showed aggregation-induced emission (AIE) properties. They could work as fluorescent sensors for detecting explosive with high sensitivity, and generate two-dimensional fluorescent photopatterns with high resolution. Furthermore, their triazolium salts could be utilized for cell-imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, Y.; Qin, A.; Tang, B. Z. Polymerizations based on triple-bond building blocks. Prog. Polym. Sci.2018, 78, 92–138.

    Article  CAS  Google Scholar 

  2. Liu, J.; Lam, J. W. Y.; Tang, B. Z. Acetylenic polymers: Syntheses, structures, and functions. Chem. Rev.2009, 109, 5799–5807.

    Article  CAS  Google Scholar 

  3. Huisgen R. in 1,3-Dipolar cycloaddition chemistry, (Ed.: A. Padwa) Wiley, New York, 1984.

  4. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed.2002, 41, 2596–2599.

    Article  CAS  Google Scholar 

  5. Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem.2002, 67, 3057–3064.

    Article  Google Scholar 

  6. Tiwari, V. K.; Mishra, B. B.; Mishra, K. B.; Mishra, N.; Singh, A. S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev.2016, 116, 3086–3240.

    Article  CAS  Google Scholar 

  7. Golas, P. L.; Matyjaszewski, K. Marrying click chemistry with polymerization: Expanding the scope of polymeric materials. Chem. Soc. Rev.2010, 39, 1338–1354.

    Article  CAS  Google Scholar 

  8. Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Recent advances in alkyne-based click polymerizations. Polym. Chem.2018, 9, 2853–2867.

    Article  CAS  Google Scholar 

  9. Wu, W.; Tang, R.; Li, Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev.2015, 44, 3997–4022.

    Article  CAS  Google Scholar 

  10. Li, H.; Qin, A.; Sun, J. Z.; Tang, B. Z. Azide-alkyne click polymerization: An update. Chinese J. Polym. Sci.2012, 30, 1–15.

    Article  Google Scholar 

  11. Qin, A.; Lam, J. W. Y.; Tang, B. Z. Click polymerization: Progresses, challenges, and opportunities. Macromolecules2010, 43, 8693–8702.

    Article  CAS  Google Scholar 

  12. Becer, C. R.; Hoogenboom, R.; Schubert, U. S. Click chemistry beyond metal-catalyzed cycloaddition. Angew. Chem. Int. Ed.2009, 48, 4900–4908.

    Article  CAS  Google Scholar 

  13. Usluer, Ö.; Abbas, M.; Wantz, G.; Vignau, L.; Hirsch, L.; Grana, E.; Brochon, C.; Cloutet, E.; Hadziioannou, G. Metal residues in semiconducting polymers: Impact on the performance of organic electronic devices. ACS Macro Lett.2014, 3, 1134–1138.

    Article  CAS  Google Scholar 

  14. Li, B.; Huang, D.; Qin, A.; Tang, B. Z. Progress on catalytic systems used in click polymerization. Macromol. Rapid Commun.2018, 39, 1800098.

    Article  Google Scholar 

  15. Qin, A.; Liu, Y.; Tang, B. Z. Regioselective metal-free click polymerization of azides and alkynes. Macromol. Chem. Phys.2015, 216, 818–828.

    Article  CAS  Google Scholar 

  16. Ni, B.; Wang, C.; Wu, H.; Pei, J.; Ma, Y. Copper-free cycloaddition of azide and alkyne in crystalline state facilitated by areneperfluoroarene interactions. Chem. Commun.2010, 46, 782–784.

    Article  CAS  Google Scholar 

  17. Meng, X.; Chen, H.; Xu, S.; Ma, Y. Metal-free 1,3-dipolar cycloaddition polymerization via prearrangement of azide and alkyne in the solid state. CrystEngComm2014, 16, 9983–9986.

    Article  CAS  Google Scholar 

  18. Pathigoolla, A.; Gonnade, R. G.; Sureshan, K. M. Topochemical click reaction: Spontaneous self-stitching of a monosaccharide to linear oligomers through lattice-controlled azide-alkyne cycloaddition. Angew. Chem. Int. Ed.2012, 51, 4362–4366.

    Article  CAS  Google Scholar 

  19. Krishnan, B. P.; Sureshan, K. M. Topochemical azide-alkyne cycloaddition reaction in gels: Size-tunable synthesis of triazole-linked polypeptides. J. Am. Chem. Soc.2017, 139, 1584–1589.

    Article  CAS  Google Scholar 

  20. Sandmannn, B.; Happ, B.; Vitz, J.; Paulus, R. M.; Hager, M. D.; Burtscher, P.; Moszner, N.; Schubert, U. S. Metal-free cycloaddition of internal alkynes and multifunctional azides under solvent-free conditions. Macromol. Chem. Phys.2014, 215, 1603–1608.

    Article  Google Scholar 

  21. Pretzel, D.; Sandmann, B.; Hartlieb, M.; Vitz, J.; Hölzer, S.; Fritz, N.; Moszner, N.; Schubert, U. S. Biological evaluation of 1,2,3-triazolebased polymers for potential applications as hard tissue material. J. Polym. Sci., Part A: Polym. Chem.2015, 53, 1843–1847.

    Article  CAS  Google Scholar 

  22. Wei, Q.; Deng, H. Q.; Cai, Y. B.; Lam, J. W. Y.; Li, J.; Sun, J. Z.; Gao, M.; Qin, A.; Tang, B. Z. Efficient polymerization of azide and active internal alkynes. Macromol. Rapid Commun. 2012, 33, 1356–1361.

    Article  CAS  Google Scholar 

  23. Yuan, W.; Chi, W.; Liu, R.; Li, H.; Li, Y.; Tang, B. Z. Synthesis of poly(phenyltriazolylcarboxylate)s with aggregation-induced emission characteristics by metal-free 1,3-dipolar polycycloaddition of phenylpropiolate and azides. Macromol. Rapid Commun.2017, 38, 1600745.

    Article  Google Scholar 

  24. Yuan, W.; Chi, W.; Han, T.; Du, J.; Li, H.; Li, Y.; Tang, B. Z. Metal-free phenylpropiolate-azide polycycloaddition: Efficient synthesis of functional poly(phenyltriazolylcarboxylate)s. Polym. Chem.2018, 9, 5215–5223.

    Article  CAS  Google Scholar 

  25. Chi, W.; Yuan, W.; Du, J.; Han, T.; Li, H.; Li, Y.; Tang, B. Z. Construction of functional hyperbranched poly(phenyltriazolylcarboxylate)s by metal-free phenylpropiolate-azide polycycloaddition. Macromol. Rapid Commun.2018, 39, 1800604.

    Article  Google Scholar 

  26. Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev.2015, 115, 11718–11940.

    Article  CAS  Google Scholar 

  27. Feng, G.; Liu, B. Aggregation-induced emission (AIE) dots: Emerging theranostic nanolights. Acc. Chem. Res.2018, 51, 1404–1414.

    Article  CAS  Google Scholar 

  28. Mei, J.; Huang, Y.; Tian, H. Progress and trends in AIE-based bioprobes: A brief overview. ACS Appl. Mater. Interfaces2018, 10, 12217–12261.

    Article  CAS  Google Scholar 

  29. Ding, S.; Liu, M.; Hong, Y. Biothiol-specific fluorescent probes with aggregation-induced emission characteristics. Sci. China Chem.2018, 61, 882–891.

    Article  CAS  Google Scholar 

  30. Ma, S.; Ma, L.; Han, W.; Jiang, S.; Xu, B.; Tian, W. Progress in 9,10-distyrylanthracene derivatives with aggregation-induced emission. Sci. Sin. Chim.2018, 48, 683–697.

    Article  Google Scholar 

  31. Hu, Y. B.; Lam, J. W. Y.; Tang, B. Z. Recent progress in AIE-active polymers. Chinese J. Polym. Sci.2019, 37, 289–301.

    Article  CAS  Google Scholar 

  32. Yang, Z.; Chi, Z.; Mao, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Aldred, M. P.; Chi, Z. Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties. Mater. Chem. Front.2018, 2, 861–890.

    Article  CAS  Google Scholar 

  33. Liu, M.; Gao, P.; Wan, Q.; Deng, F.; Wei, Y.; Zhang, X. Recent advances and future prospects of aggregation-induced emission carbohydrate polymers. Macromol. Rapid Commun.2017, 38, 1600575.

    Article  Google Scholar 

  34. Wu, Y.; Qin, A.; Tang, B. Z. AIE-active polymers for explosive detection. Chinese J. Polym. Sci.2017, 35, 141–154.

    Article  CAS  Google Scholar 

  35. Campbell, M.; Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature2000, 404, 53–56.

    Article  CAS  Google Scholar 

  36. Han, T.; Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. Monomer stoichiometry imbalance-promoted formation of multisubstituted polynaphthalenes by palladium-catalyzed polycouplings of aryl iodides and internal diynes. Polym. Chem.2018, 9, 885–893.

    Article  CAS  Google Scholar 

  37. Dimitrov-Raytchev, P.; Beghdadi, S.; Serghei, A.; Drockenmuller, E. Main-chain 1,2,3-triazolium-based poly(ionic liquid)s issued from AB + AB click chemistry polyaddition. J. Polym. Sci., Part A: Polym. Chem.2013, 51, 34–38.

    Article  CAS  Google Scholar 

  38. Obadia, M. M.; Jourdain, A.; Serghei, A.; Ikeda, T.; Drockenmuller, E. Cationic and dicationic 1,2,3-triazolium-based poly(ethylene glycol ionic liquid)s. Polym. Chem.2017, 8, 910–917.

    Article  CAS  Google Scholar 

  39. Jourdain, A.; Antoniuk, I.; Serghei, A.; Espuche, E.; Drockenmuller, E. 1,2,3-Triazolium-based linear ionic polyurethanes. Polym. Chem. 2017, 8, 5148–5156.

    Article  CAS  Google Scholar 

  40. Tan, W.; Li, Q.; Dong, F.; Qiu, S.; Zhang, J.; Guo, Z. Novel 1,2,3-triazolium-functionalized starch derivatives: Synthesis, characterization, and evaluation of antifungal property. Carbohydr. Polym.2016, 160, 163–171.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Nos. 21875152 and 21404077), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB150034), and the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD). H. K. Li acknowledges the financial supports from Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1501023B) and China Postdoctoral Science Foundation (No. 2016M591906).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Kun Li, Wei-Jie Zhang or Ben Zhong Tang.

Electronic Supplementary Information

10118_2019_2316_MOESM1_ESM.pdf

Facile Synthesis of Functional Poly(methyltriazolylcarboxylate)s by Solvent- and Catalyst-free Butynoate-Azide Polycycloaddition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, WW., Zhang, RY., Han, T. et al. Facile Synthesis of Functional Poly(methyltriazolylcarboxylate)s by Solvent- and Catalyst-free Butynoate-Azide Polycycloaddition. Chin J Polym Sci 38, 17–23 (2020). https://doi.org/10.1007/s10118-019-2316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2316-y

Keywords

Navigation