Skip to main content

Advertisement

Log in

Self-healing Behavior of Ethylene Propylene Diene Rubbers Based on Ionic Association

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

To meet the increasing demand for safe, environmentally friendly and high-performance smart materials, self-healing rubbers are highly desired. Here, the self-healing performance of ethylene propylene diene monomer rubber (EPDM) is reported, which was designed by graft-polymerization of zinc dimethacrylate (ZDMA) onto rubber chains to form a reversible ionic cross-linked network. Single ionic cross-linked network and dual network, combining covalent and ionic cross-links, could be tuned by controlling vulcanization process to achieve tailorable mechanical and self-healing properties. It was found that ionic cross-linked EPDM showed a recovery of more than 95% of the original mechanical strength through a healing process of 1 h at 100 °C. The covalent cross-links could improve mechanical properties but block self-healing. Adding 50 wt% liquid rubber to “dry” EPDM could effectively enhance self-healing capability of the dual cross-linked network and the healed tensile strength could reach 0.9 MPa. A compromise between mechanical performance and healing capability could be potentially tailored by controlling vulcanization process and liquid rubber content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vèlez, J. S.; Velásquez, S.; Giraldo, D. Mechanical and rheometric properties of gilsonite/carbon black/natural rubber compounds cured using conventional and efficient vulcanization systems. Polym. Test. 2016, 56: 1–9.

    Article  CAS  Google Scholar 

  2. Hosseini, S. M.; Razzaghi-Kashani, M. On the role of nanosilica in the kinetics of peroxide vulcanization of ethylene propylene diene rubber. Polymer, 2017, 133, 8–19.

    Article  CAS  Google Scholar 

  3. Movahed, S. O.; Ansarifar, A.; Zohuri, G.; Ghaneie, N.; Kermany, Y. Devulcanization of ethylene-propylene-diene waste rubber by microwaves and chemical agents. J. Elastomer Plast. 2014, 48, 122–144.

    Article  CAS  Google Scholar 

  4. Yu, B. C.; Jung, J. W.; Park, K.; Goodenough, J. B. A new approach for recycling waste rubber products in Li-S batteries. Energ. Environ. Sci. 2017, 10, 86–90.

    Article  CAS  Google Scholar 

  5. Molanorouzi, M.; Mohaved, S. O. Reclaiming waste tire rubber by an irradiation technique. Polym. Degrad. Stab. 2016, 128, 115–125.

    Article  CAS  Google Scholar 

  6. Keller, M. W.; White, S. R.; Sottos, N. R. A self-healing poly(dimethyl siloxane) elastomer. Adv. Funct. Mater. 2007, 17, 2399–2404.

    Article  CAS  Google Scholar 

  7. Chowdhury, R. A.; Hosur, M. V.; Nuruddin, M.; Tcherbi-Narteh, A.; Kumar, A.; Boddu, V.; Jeelani, S. Self-healing epoxy composites: Preparation, characterization and healing performance. J. Mater. Res. Technol. 2015, 4, 33–43.

    Article  CAS  Google Scholar 

  8. Pepels, M.; Filot, I.; Klumperman, B.; Goossens, H. Self-healing systems based on disulfide-thiol exchange reactions. Polym. Chem. 2013, 4, 4955–11.

    Article  CAS  Google Scholar 

  9. Guo, Y. K.; Li, H.; Zhao, P. X.; Wang, X. F.; Astruc, D.; Shuai, M. B. Thermo-reversible MWCNTs/epoxy polymer for use in self-healing and recyclable epoxy adhesive. Chinese J. Polym. Sci. 2017, 35, 728–738.

    Article  CAS  Google Scholar 

  10. Kang, J.; Son, D.; Wang, G. J. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L.; Tok, J. B. H.; Bao, Z. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 2018, 15, 1706846.

    Article  CAS  Google Scholar 

  11. Liu, X.; Lu, C.; Wu, X.; Zhang, X. Self-healing strain sensors based on nanostructured supramolecular conductive elastomers. J. Mater. Chem. A 2017, 5, 9824–9832.

    Article  CAS  Google Scholar 

  12. Luan, Y. G.; Zhang, X. A.; Jiang, S. L.; Chen, J. H.; Lyu, Y. F. Self-healing supramolecular polymer composites by hydrogen bonding interactions between hyperbranched polymer and graphene oxide. Chinese J. Polym. Sci. 2018, 36, 584–591.

    Article  CAS  Google Scholar 

  13. Liu, J.; Liu, J.; Wang, S.; Huang, J.; Wu, S.; Tang, Z.; Guo, B.; Zhang, L. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability. J. Mater. Chem. A 2017, 5, 25660–25671.

    Article  CAS  Google Scholar 

  14. Jia, X. Y.; Mei, J. F.; Lai, J. C.; Li, C. H.; You, X. Z. A highly stretchable polymer that can be thermally healed at mild temperature. Macromol. Rapid Commun. 2016, 37, 952–956.

    Article  CAS  PubMed  Google Scholar 

  15. Rahman, M. A.; Penco, M.; Peroni, I.; Ramorino, G.; Grande, A. M.; Di Landro, L. Self-repairing systems based on ionomers and epoxidized natural rubber blends. ACS Appl. Mater. Interfaces 2011, 3, 4865–4874.

    Article  CAS  PubMed  Google Scholar 

  16. García-Huete, N.; Post, W.; Laza, J. M.; Vilas, J. L.; León, L. M.; García, S. J. Effect of the blend ratio on the shape memory and self-healing behaviour of ionomer-polycyclooctene cross-linked polymer blends. Eur. Polym. J. 2018, 98, 154–161.

    Article  CAS  Google Scholar 

  17. Das, A.; Sallat, A.; Böhme, F.; Suckow, M.; Basu, D.; Wießner, S.; Stöckelhuber, K. W.; Voit, B.; Heinrich, G. Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 2015, 7, 20623–20630.

    Article  CAS  PubMed  Google Scholar 

  18. Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 2012, 4, 467–472.

    Article  CAS  PubMed  Google Scholar 

  20. Kalista, S. J., Jr.; Ward, T. C.; Oyetunji, Z. Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech. Adv. Mater. Struc. 2007, 14, 391–397.

    Article  CAS  Google Scholar 

  21. Zhong, M.; Liu, Y. T.; Xie, X. M. Self-healable, super tough graphene oxide-poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J. Mater. Chem. B 2015, 3, 4001–4008.

    Article  CAS  Google Scholar 

  22. Xu, C.; Cao, L.; Lin, B.; Liang, X.; Chen, Y. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl. Mater. Interfaces 2016, 8, 17728–17737.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, J.; Huo, M.; Li, M.; Li, T.; Li, N.; Zhou, J.; Jiang, J. Shape memory and self-healing materials from supramolecular block polymers. Polymer 2018, 134, 35–43.

    Article  CAS  Google Scholar 

  24. Miwa, Y.; Kurachi, J.; Kohbara, Y.; Kutsumizu, S. Dynamic ionic cross-links enable high strength and ultrastretchability in a single elastomer. Commun. Chem. 2018, 1, 5.

    Article  CAS  Google Scholar 

  25. Peng, Z.; Liang, X.; Zhang, Y.; Zhang, Y. Reinforcement of EPDM by in situ prepared zinc dimethacrylate. J. Appl. Polym. Sci. 2002, 84, 1339–1345.

    Article  CAS  Google Scholar 

  26. Nie, Y.; Huang, G.; Qu, L.; Zhang, P.; Weng, G.; Wu, J. Cure kinetics and morphology of natural rubber reinforced by the in situ polymerization of zinc dimethacrylate. J. Appl. Polym. Sci. 2010, 115, 99–106.

    Article  CAS  Google Scholar 

  27. Chen, Y.; Xu, C. Cross-link network evolution of nature rubber/zinc dimethacrylate composite during peroxide vulcanization. Polym. Compos. 2011, 32, 1505–1514.

    Article  CAS  Google Scholar 

  28. Xu, C.; Huang, X.; Li, C.; Chen, Y.; Lin, B.; Liang, X. Design of “Zn2+ salt-bondings” cross-linked carboxylated styrene butadiene rubber with reprocessing and recycling ability via rearrangements of ionic cross-linkings. ACS Sustain. Chem. Eng. 2016, 4, 6981–6990.

    Article  CAS  Google Scholar 

  29. Xu, C.; Cao, L.; Huang, X.; Chen, Y.; Lin, B.; Fu, L. Self-healing natural rubber with tailorable mechanical properties based on ionic supramolecular hybrid network. ACS Appl. Mater. Interfaces 2017, 9, 29363–29373.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, D.; Guo, J.; Zhang, H.; Cheng, B.; Shen, H.; Zhao, N.; Xu, J. Intelligent rubber with tailored properties for self-healing and shape memory. J. Mater. Chem. A 2015, 3, 12864–12872.

    Article  CAS  Google Scholar 

  31. Cao, L.; Huang, J.; Chen, Y. Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility. ACS Sustain. Chem. Eng. 2018, 6, 14802–14811.

    Article  CAS  Google Scholar 

  32. Xu, C.; Cui, R.; Fu, L.; Lin, B. Recyclable and heat-healable epoxidized natural rubber/bentonite composites. Compos. Sci. Technol. 2018, 167, 421–430.

    Article  CAS  Google Scholar 

  33. Flory, P. J. Statistical mechanics of swelling of network structures. J. Chem. Phys. 1950, 18, 108–111.

    Article  CAS  Google Scholar 

  34. Bala, P.; Samantaray, B. K.; Srivastava, S. K.; Nando, G. B. Organomodified montmorillonite as filler in natural and synthetic rubber. J. Appl. Polym. Sci. 2004, 92, 3583–3592.

    Article  CAS  Google Scholar 

  35. Liu, X. Y.; Zhong, M.; Shi, F. K.; Xu, H.; Xie, X. M. Multibond network hydrogels with robust mechanical and self-healable properties. Chinese J. Polym. Sci. 2017, 35, 1253–1267.

    Article  CAS  Google Scholar 

  36. Yarmohammadi, M.; Shahidzadeh, M.; Ramezanzadeh, B. Designing an elastomeric polyurethane coating with enhanced mechanical and self-healing properties- the influence of disulfide chain extender. Prog. Org. Coat. 2018, 121, 45–52.

    Article  CAS  Google Scholar 

  37. Wool, R. P.; O’Connor, K. M. A theory crack healing in polymers. J. Appl. Phys. 1981, 52, 5953–5963.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (Nos. 2015CB654700 and 2015CB654706), the National Natural Science Foundation of China (No. 51403115), and the Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics of Qingdao University of Science & Technology (KF2017008). We are also grateful for the support from Hutchinson.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Yang or Shu-Gao Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZF., Yang, K., Zhao, SG. et al. Self-healing Behavior of Ethylene Propylene Diene Rubbers Based on Ionic Association. Chin J Polym Sci 37, 700–707 (2019). https://doi.org/10.1007/s10118-019-2241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2241-0

Keywords

Navigation