Skip to main content
Log in

Synthesis and Characterization of Butyl Acrylate-based Graft Polymers with Thermo-responsive Branching Sites via the Diels-Alder Reaction of Furan/Maleimide

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Thermo-responsive butyl acrylate/furfuryl methacrylate copolymer-based (PBF backbone) graft (co)polymers with dynamic covalent linkages between their backbones and side chains via the Diels-Alder reaction of furan/maleimide were synthesized. Atom transfer radical polymerization (ATRP) was used to synthesize graft copolymers with thermo-responsive transformation from graft copolymers to linear polymers with bimodal or wide MWD. The NMR measurements indicated that the Diels-Alder reaction and retro-Diels-Alder reaction occurred, depending on the change of the temperature, meaning that the side chains could be cleaved and reformed according to the variation of the temperature. GPC measurements demonstrated that the molecular weights of the polymers were thermoresponsive. Furthermore, three graft copolymers with various branching chains (PBF-g-PBA, PBF-g-P(BMA-co-MA) and PBF-g-PBMA) were compared to study the influence of compatibility between the backbone and the branching chain on the efficiency of Diels-Alder reaction after the cleavage of the DA linkage. The results showed that the ability of the side chains to come back to the main chain was strongly affected by the compatibility between the backbone and the side chains and the flexibility of the polymer chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weis, P.; Wang, D.; Wu, S. Visible-light-responsive azopolymers with inhibited π-π stacking enable fully reversible photopatterning. Macromolecules, 2016, 49(17), 6368–6373.

    Article  CAS  Google Scholar 

  2. Yamamoto, T.; Yagyu, S.; Tezuka, Y. Light- and heat-triggered reversible linear-cyclic topological conversion of telechelic polymers with anthryl end groups. J. Am. Chem. Soc., 2016, 138(11), 3904–3911.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, Y.; Ying, H.; Hart, K. R.; Wu, Y.; Hsu, A. J.; Coppola, A. M.; Kim, T. A.; Yang, K.; Sottos, N. R.; White, S. R. Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds. Adv. Mater., 2016, 28(35), 7646–7651.

    Article  CAS  PubMed  Google Scholar 

  4. Zheng, N.; Fang, Z. Z.; Zou, W. K.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem. Int. Ed.,, 2016, 55(38), 11421–11425.

    Article  CAS  Google Scholar 

  5. Fang, Y. L.; Du, X. S.; Du, Z. L.; Wang, H. B.; Cheng, X. Light- and heat-triggered polyurethane based on dihydroxyl anthracene derivatives for self-healing applications. J. Mater. Chem. A, 2017, 5(17), 8010–8017.

    Article  CAS  Google Scholar 

  6. van Damme, J.; van den Berg, O.; Brancart, J.; Vlaminck, L.; Huyck, C.; van Assche, G.; van Mele, B.; Du Prez, F. Anthracene-based thiol-ene networks with thermo-degradable and photo-reversible properties. Macromolecules, 2017, 50(5), 1930–1938.

    Article  CAS  Google Scholar 

  7. Röttger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science, 2017, 356(6333), 62–65.

    Article  CAS  PubMed  Google Scholar 

  8. Turkenburg, D. H.; Durant, Y.; Fischer, H. R. Bio-based selfhealing coatings based on thermo-reversible Diels-Alder reaction. Prog. Org. Coat., 2017, 111, 38–46.

    Article  CAS  Google Scholar 

  9. Yesilyurt, V.; Webber, M. J.; Appel, E. A.; Godwin, C.; Langer, R.; Anderson, D. G. Injectable self-healing glucoseresponsive hydrogels with pH-regulated mechanical properties. Adv. Mater., 2016, 28(1), 86–91.

    Article  CAS  PubMed  Google Scholar 

  10. Nakahata, M.; Mori, S.; Takashima, Y.; Yamaguchi, H.; Harada, A. Self-healing materials formed by cross-linked polyrotaxanes with reversible bonds. Chem, 2016, 1(5), 766–775.

    Article  CAS  Google Scholar 

  11. Lu, Y. X.; Tournilhac, F. O.; Leibler, L.; Guan, Z. Making insoluble polymer networks malleable via olefin metathesis. J. Am. Chem. Soc., 2012, 134(20), 8424–8427.

    Article  CAS  PubMed  Google Scholar 

  12. Shi, Q.; Yu, K.; Dunn, M. L.; Wang, T.; Qi, H. J. Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers. Macromolecules, 2016, 49(15), 5527–5537.

    Article  CAS  Google Scholar 

  13. Zong, C.; Zhao, Y.; Ji, H.; Han, X.; Xie, J.; Wang, J.; Cao, Y.; Jiang, S.; Lu, C. Tuning and erasing surface wrinkles by reversible visible-light-induced photoisomerization. Angew. Chem. Int. Ed., 2016, 55(12), 3931–3935.

    Article  CAS  Google Scholar 

  14. Guimard, N. K.; Oehlenschlaeger, K. K.; Zhou, J.; Hilf, S.; Schmidt, F. G.; Barner-Kowollik, C. Current trends in the field of self-healing materials. Macromol. Chem. Phys., 2012, 213(2), 131–143.

    Article  CAS  Google Scholar 

  15. Jeon, I.; Cui, J. X.; Illeperuma, W. R. K.; Aizenberg, J.; Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater., 2016, 28(23), 4678–4683.

    Article  CAS  PubMed  Google Scholar 

  16. Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. A highly stretchable autonomous self-healing elastomer. Nat. chem., 2016, 8(6), 618–24.

    Article  CAS  PubMed  Google Scholar 

  17. Chang, J.; Zhao, Q.; Kang, L.; Li, H.; Xie, M.; Liao, X. Multiresponsive supramolecular gel based on pillararenecontaining polymers. Macromolecules, 2016, 49(7), 2814–2820.

    Article  CAS  Google Scholar 

  18. Yuan, C. E.; Zhang, M. Q.; Rong, M. Z. Application of alkoxyamine in self-healing of epoxy. J. Mater. Chem. A, 2014, 2(18), 6558–6566.

    Article  CAS  Google Scholar 

  19. Radl, S.; Kreimer, M.; Griesser, T.; Oesterreicher, A.; Moser, A.; Kern, W.; Schlögl, S. New strategies towards reversible and mendable epoxy based materials employing [4ps+4ps] photocycloaddition and thermal cycloreversion of pendant anthracene groups. Polymer, 2015, 80, 76–87.

    Article  CAS  Google Scholar 

  20. Oehlenschlaeger, K. K.; Mueller, J. O.; Brandt, J.; Hilf, S.; Lederer, A.; Wilhelm, M.; Graf, R.; Coote, M. L.; Schmidt, F. G.; Barner-Kowollik, C. Adaptable hetero Diels-Alder networks for fast self-healing under mild conditions. Adv. Mater., 2014, 26(21), 3561–3566.

    Article  CAS  PubMed  Google Scholar 

  21. Amamoto, Y.; Kamada, J.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem., 2011, 123(7), 1698–1701.

    Article  Google Scholar 

  22. Taynton, P.; Ni, H.; Zhu, C.; Yu, K.; Loob, S.; Jin, Y.; Qi, H. J.; Zhang, W. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks. Adv. Mater., 2016, 28(15), 2904–2909.

    Article  CAS  PubMed  Google Scholar 

  23. Chao, A.; Negulescu, I.; Zhang, D. Dynamic covalent polymer networks based on degenerative imine bond exchange: tuning the malleability and self-healing properties by solvent. Macromolecules, 2016, 49(17), 6277–6284.

    Article  CAS  Google Scholar 

  24. Yang, Y.; Pei, Z.; Li, Z.; Wei, Y.; Ji, Y. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold. J. Am. Chem. Soc., 2016, 138(7), 2118–2121.

    Article  CAS  PubMed  Google Scholar 

  25. Lu, Y. X.; Guan, Z. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon double 25 bonds. J. Am. Chem. Soc., 2012, 134(34), 14226–14231.

    Article  CAS  PubMed  Google Scholar 

  26. Tasdelen, M. A. Diels-Alder “click” reactions: recent applications in polymer and material science. Polym. Chem., 2011, 2(10), 2133–2145.

    Article  CAS  Google Scholar 

  27. Sanyal, A. Diels-Alder Cycloaddition-cycloreversion: A powerful combo in materials design. Macromol. Chem. Phys., 2010, 211(13), 1417–1425.

    Article  CAS  Google Scholar 

  28. Gregoritza, M.; Brandl, F. P. The Diels-Alder reaction: a powerful tool for the design of drug delivery systems and biomaterials. Eur. J. Pharm. Biopharm., 2015, 97, 438–453.

    Article  CAS  PubMed  Google Scholar 

  29. Gandini, A. The furan/maleimide Diels-Alder reaction: a versatile click-unclick tool in macromolecular synthesis. Prog. Polym. Sci., 2013, 38(1), 1–29.

    Article  CAS  Google Scholar 

  30. Gandini, A. Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polym. Chem., 2010, 1(3), 245–251.

    Article  CAS  Google Scholar 

  31. Gandini, A. Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules, 2008, 41(24), 9491–9504.

    Article  CAS  Google Scholar 

  32. Polgar, L.; Kingma, A.; Roelfs, M.; van Essen, M.; van Duin, M.; Picchioni, F. Kinetics of cross-linking and de-cross-linking of EPM rubber with thermoreversible Diels-Alder chemistry. Eur. Polym. J., 2017, 90, 150–161.

    Article  CAS  Google Scholar 

  33. Pramanik, N. B.; Mondal, P.; Mukherjee, R.; Singha, N. K. A new class of self-healable hydrophobic materials based on ABA triblock copolymer via RAFT polymerization and Diels-Alder "click chemistry". Polymer, 2017, 119, 195–205.

    Article  CAS  Google Scholar 

  34. Heo, Y.; Sodano, H. A. Thermally responsive self-healing composites with continuous carbon fiber reinforcement. Compos. Sci. Technol., 2015, 118, 244–250.

    Article  CAS  Google Scholar 

  35. Laure, W.; Woisel, P.; Lyskawa, J. Switching the wettability of titanium surfaces through Diels-Alder chemistry. Chem. Mater., 2014, 26(12), 3771–3780.

    Article  CAS  Google Scholar 

  36. Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science, 2002, 295(5560), 1698–1702.

    Article  CAS  PubMed  Google Scholar 

  37. Hu, W.; Ren, Z.; Li, J.; Askounis, E.; Xie, Z.; Pei, Q. New dielectric elastomers with variable moduli. Adv. Funct. Mater., 2015, 25(30), 4827–4836.

    Article  CAS  Google Scholar 

  38. Aumsuwan, N.; Urban, M. W. Reversible releasing of arms from star morphology polymers. Polymer, 2009, 50(1), 33–36.

    Article  CAS  Google Scholar 

  39. Syrett, J. A.; Mantovani, G.; Barton, W. R. S.; Price, D.; Haddleton, D. M. Self-healing polymers prepared via living radical polymerisation. Polym. Chem., 2010, 1(1), 102–106.

    Article  CAS  Google Scholar 

  40. Deng, G.; Chen, Y. A novel way to synthesize star polymers in one pot by ATRP of N-[2-(2-bromoisobutyryloxy)- ethyl]maleimide and styrene. Macromolecules, 2004, 37(1), 18–26.

    Article  CAS  Google Scholar 

  41. Buzin, A. I.; Pyda, M.; Costanzo, P.; Matyjaszewski, K.; Wunderlich, B. Calorimetric study of block-copolymers of poly(n-butyl acrylate) and gradient poly(n-butyl acrylate-comethyl methacrylate). Polymer, 2002, 43(20), 5563–5569.

    Article  CAS  Google Scholar 

  42. Canadell, J.; Fischer, H.; De With, G.; van Benthem, R. A. T. M. Stereoisomeric effects in thermo-remendable polymer networks based on Diels-Alder crosslink reactions. J. Polym. Sci., Part A: Polym. Chem., 2010, 48(15), 3456–3467.

    Article  CAS  Google Scholar 

  43. Mauldin, T. C.; Rule, J. D.; Sottos, N. R.; White, S. R.; Moore, J. S. Self-healing kinetics and the stereoisomers of dicyclopentadiene. J. R. Soc. Interface, 2007, 4(13), 389–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gandini, A.; Belgacem, M. N. Furans in polymer chemistry. Prog. Polym. Sci., 1997, 22(6), 1203–1379.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51233005, 21374114, and 21274152).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Ma or Tao Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Zhang, SF., Lin, YC. et al. Synthesis and Characterization of Butyl Acrylate-based Graft Polymers with Thermo-responsive Branching Sites via the Diels-Alder Reaction of Furan/Maleimide. Chin J Polym Sci 36, 1011–1018 (2018). https://doi.org/10.1007/s10118-018-2107-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2107-x

Keywords

Navigation