Skip to main content
Log in

Self-healing Supramolecular Polymer Composites by Hydrogen Bonding Interactions between Hyperbranched Polymer and Graphene Oxide

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A self-healing supramolecular polymer composite (HSP-GO) was designed and prepared via incorporation of modified graphene oxide to hyperbranched polymer by hydrogen-bonding interactions. The polymer matrix based on amino-terminated hyperbranched polymer (HSP-NH2) was synthesized by carboxylation, Curtius rearrangement, and amination of hydroxyl-terminated hyperbranched polyester (HP-OH), while the modified graphene oxide was prepared by transformation of hydroxyl to isocyanate and further to carbamate ester. Spectroscopic methods were utilized to characterize the obtained polymer composites. Stress-strain test was selected to carefully study the self-healing property of HSP-GO. It is found that a small amount of modified graphene oxide (up to 2 wt%) improves the glass transition temperature (Tg), tensile strength, Young’s modulus, and self-healing efficiency of the polymer composites. After healed at room temperature for 10 min, the addition of modified graphene oxide improves the self-healing efficiency to 37% of its original tensile strength. The experiment result shows that the self-healing efficiency is related to the density of hydrogen bonding site and the molecular movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blaiszik, B. J.; Kramer, S. L. B.; Olugebefola, S. C.; Moore, J. S.; Sottos, N. R.; White, S. R. Self-healing polymers and composites. Annu. Rev. Mater. Res. 2010, 40, 179–211.

    Article  CAS  Google Scholar 

  2. Hager, M. D.; Greil, P.; Leyens, C.; Zwaag, S. V. D. Self-healing materials. Adv. Mater. 2010, 22(47), 5424–5430.

    Article  CAS  Google Scholar 

  3. Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 2011, 10(1), 14–27.

    Article  CAS  Google Scholar 

  4. Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295(5560), 1698–1702.

    Article  CAS  Google Scholar 

  5. Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W.; Seppala, J.; Colquhoun, H. M.; Hayes, W.; Mackay, M. E.; Hamley, L. W.; Rowan, S. J. A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 2010, 132(34), 12051–12058.

    Article  CAS  Google Scholar 

  6. Klukovich, H. M.; Kean, Z. S.; Iacono, S. T.; Craig, S. L. Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. J. Am. Chem. Soc. 2011, 133(44), 17882–17888.

    Article  CAS  Google Scholar 

  7. Zheng, P.; Mccarthy, T. J. A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 2012, 134(4), 2024–2027.

    Article  CAS  Google Scholar 

  8. Chen, X.; Wudl, F.; Mal, A. K.; Shen, H.; Nuut, S. R. New thermally remendable highly cross-linked polymeric materials. Macromolecules 2003, 36(6), 1802–1807.

    Article  CAS  Google Scholar 

  9. Liu, F.; Li, F.; Deng, G.; Chen, Y.; Zhang, B.; Zhang, J.; Liu, C. Y. Rheological images of dynamic covalent polymer networks and mechanisms behind mechanical and self-healing properties. Macromolecules 2012, 45(3), 1636–1645.

    Article  CAS  Google Scholar 

  10. Ghosh, B.; Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 2009, 323(5920), 1458–1460.

    Article  CAS  Google Scholar 

  11. Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C. Optically healable supramolecular polymers. Nature 2011, 472(7343), 334–338.

    Article  CAS  Google Scholar 

  12. Ling, J.; Rong, M. Z.; Zhang, M. Q. Effect of molecular weight of PEG soft segments on photo-stimulated self-healing performance of coumarin functionalized polyurethanes. Chinese J. Polym. Sci. 2014, 32(10), 1286–1297.

    Article  CAS  Google Scholar 

  13. Lehn, J. M. Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 2005, 30, 814–831.

    Article  CAS  Google Scholar 

  14. Herbst, F.; Döhler, D.; Michael, P.; Binder, W. H. Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 2013, 34(3), 203–220.

    Article  CAS  Google Scholar 

  15. Cuthbert, T. J.; Jadischke, J. J.; Bruyn, J. R. D.; Ragogna, P. J.; Gillies, E. R. Self-healing polyphosphonium ionic networks. Macromolecules 2017, 50, 5253–5260.

    Article  CAS  Google Scholar 

  16. Li, Y.; Li, J.; Chen, B.; Chen, Q.; Zhang, G.; Liu, S.; Ge, Z. Polyplex micelles with thermoresponsive heterogeneous coronasn for prolonged blood retention and promoted gene transfection. Biomacromolecules 2014, 15(8), 2914–2923.

    Article  CAS  Google Scholar 

  17. Wang, C.; Zhang, G.; Liu, G.; Hu, J.; Liu, S. Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin. J. Control. Release 2017, 259, 149–159.

    Article  CAS  Google Scholar 

  18. Zeng, Q.; Desai M. S.; Jin, H. E.; Lee, J. H.; Chang, J.; Lee, S. W. Self-healing elastin-bioglass hydrogels. Biomacromolecules 2016, 17(8), 2619–2625.

    Article  CAS  Google Scholar 

  19. Brocorens, P.; Linares, M.; Guyardduhayon, C.; Guillot, R.; Andrioletti, B.; Suhr, D.; Benjiamin, I.; Lazzaroni, R.; Bouteiller, L. Conformational plasticity of hydrogen bonded bis-urea supramolecular polymers. J. Phy. Chem. B 2013, 117(17), 5379–5386.

    Article  CAS  Google Scholar 

  20. van Gemert, G. M. L.; Peeters, J. W.; Söntjens, S. H. M.; Janssen, H. M.; Bosman, A. W. Self-healing supramolecular polymers in action. Macromol. Chem. Phys. 2012, 213, 234–242.

    Article  Google Scholar 

  21. Cordier, P.; Tournilhac, F.; Soulie-Ziakovi, C.; Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451(7181), 977–980.

    Article  CAS  Google Scholar 

  22. Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

    Article  CAS  Google Scholar 

  23. Lopez, J.; Chen, Z.; Wang, C.; Andrews, S. C.; Cui, Y.; Bao, Z. The effects of cross-linking in a supramolecular binder on cycle life in silicon microparticle anodes. ACS Appl. Mater. Interfaces 2016, 8, 2318–2324.

    Article  CAS  Google Scholar 

  24. Tee, B. C.; Wang, C.; Allen, R.; Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7(12), 825–832.

    Article  CAS  Google Scholar 

  25. Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192–8195.

    Article  CAS  Google Scholar 

  26. Wang, G.; Shen, X.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 2009, 47, 2049–2053.

    Article  CAS  Google Scholar 

  27. Pei, S.; Cheng, H. M. The reduction of graphene oxide. Carbon 2012, 50(9), 3210–3228.

    Article  CAS  Google Scholar 

  28. Wang, C.; Liu, N.; Allen, R.; Tok, J. B. H.; Wu, Y.; Zhang, F.; Chen, Y.; Bao, Z. A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. Adv. Mater. 2013, 25, 5785–5790.

    Article  CAS  Google Scholar 

  29. Li, J.; Zhang, G.; Deng, L.; Zhao, S.; Gao, Y.; Jiang, K.; Sun, R.; Wong, C. In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels-Alder chemistry. J. Mater. Chem. A 2014, 2(48), 20642–20649.

    Article  CAS  Google Scholar 

  30. Xu, C.; Wu, X.; Zhu, J.; Wang, X. Synthesis of amphiphilic graphite oxide. Carbon 2008, 46(2), 386–389.

    Article  CAS  Google Scholar 

  31. Zhang, A.; Yang, L.; Lin, Y.; Yan, L.; Lu, H.; Wang, L. Self-healing supramolecular elastomers based on the multi-hydrogen bonding of low-molecular polydimethylsiloxanes: synthesis and characterization. J. Appl. Polym. Sci. 2013, 129(5), 2435–2442.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Fei Lyu.

Electronic supplementary material

10118_2018_2025_MOESM1_ESM.pdf

Self-Healing Supramolecular Polymer Composites by Hydrogen Bonding Interactions between Hyperbranched Polymer and Graphene Oxide

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, YG., Zhang, XA., Jiang, SL. et al. Self-healing Supramolecular Polymer Composites by Hydrogen Bonding Interactions between Hyperbranched Polymer and Graphene Oxide. Chin J Polym Sci 36, 584–591 (2018). https://doi.org/10.1007/s10118-018-2025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2025-y

Keywords

Navigation