Skip to main content
Log in

Compositional effect of ZrO2 nanofillers on a PVDF-co-HFP based polymer electrolyte system for solid state zinc batteries

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Composite polymer electrolytes (CPEs) comprising poly(vinilydene fluoride-hexafluoro propylene), PVDF-co-HFP and zinc triflate, Zn(CF3SO3)2 with varying concentrations of ZrO2 nanofillers were prepared by solution casting technique with N,N-dimethyl formamide (DMF) as the common solvent. The polymer electrolyte specimen with the particular composition 75 wt% PVDF-co-HFP: 25 wt% ZnTf + 7 wt% ZrO2 showed the highest conductivity of 4.6 × 10-4 S/cm at 298 K as confirmed from impedance measurements and favored by the rich amorphous phase of the CPE revealed from room temperature X-ray diffraction analysis (XRD). The electrical conductivity relaxation time and its distribution within the materials have been evaluated from the electric modulus M″ and impedance Z″ data which showed the occurrence of non-Debye type of relaxation phenomenon. The changes in the surface morphology of the CPEs were examined using scanning electron microscopy (SEM). The electrochemical stability window of CPE is found to be 2.6 V with a thermal stability up to 300 °C. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple under a constant load of 1 MΩ and its discharge characteristics have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gray, F.M., “Polymer electrolytes” Connor, J.A (ed) Royal Society of Chemistry, Cambridge, UK, 1997, p.175 (RSC Materials Monographs)

  2. Mc Callum, J.R. and Vincent, C.A., “Polymer electrolytes review-I.” Elsevier Applied Science London, 1987

    Google Scholar 

  3. Kumar, B. and Scanlan, L.G., J. Power Sources, 1994, 52: 261

    Article  CAS  Google Scholar 

  4. Croce, F., Appetacchi, G.B., Persi, L and Scrosati, B., Nature, 1998, 394: 456

    Article  CAS  Google Scholar 

  5. Wang, Y.J. and Kim, D., Electrochim. Acta, 2007, 52: 3181

    Article  CAS  Google Scholar 

  6. Wang, G., Roos, J. and Brinkmann, D., Solid State Ionics, 1992, 53–56: 1102

    Google Scholar 

  7. Kim, H.S., Shin, J.H., Moon, S.I. and Kim, S.P., Electrochim. Acta, 2003, 48: 1573

    Article  CAS  Google Scholar 

  8. Scrosati, B., Croce, F. and Persi, L., J. Electrochem. Soc., 2000, 147: 1718

    Article  CAS  Google Scholar 

  9. Thomas, K.E., Sloop, S.E., Kerr, J.B. and Newman, J., J. Power Sources, 2000, 89: 132

    Article  CAS  Google Scholar 

  10. Suthanthiraraj, S.A. and Sheeba, D.J., Ionics, 2007, 13: 447

    Article  CAS  Google Scholar 

  11. Chu, P.P. and Reddy, M.J., J. Power Sources, 2003, 115: 288

    Article  CAS  Google Scholar 

  12. Bishop, A.G., MacFarlane, D.R., McNaughton, D. and Forsyth, M., J. Phys. Chem. 1996, 100: 2237

    Article  CAS  Google Scholar 

  13. Pasquier, A.D., Warren, P.C., Culver, D., Gozdz, A.S., Amatucci, G.G. and Tarascon, J.M., Solid State Ionics, 2000, 135: 249

    Article  Google Scholar 

  14. Henderson, W., Brooks, N. and Young, V.G.Jr., J. Am. Chem. Soc., 2003, 125: 12098

    Article  CAS  Google Scholar 

  15. Johnsi, M. and Suthanthiraraj, S.A., High. Perform. Polym., 2015, 27: 877

    Article  CAS  Google Scholar 

  16. Aziz, S.B., Abidin, Z.H.Z. and Arof, A.K., Express Polym. Lett., 2010, 4: 300

    Article  CAS  Google Scholar 

  17. Singh, K.P. and Gupta, P.N., Eur. Polym. J., 1998, 34: 1023

    Article  CAS  Google Scholar 

  18. Sownthari, K. and Suthanthiraraj, S.A., J. Appl. Polym. Sci., 2014, 131: 405241

    Article  Google Scholar 

  19. Guler, F.G. and Sarac, A.S., Express Polym. Lett., 2011, 5: 493

    Article  CAS  Google Scholar 

  20. Nithya, H., Selvasekarapandian, S., Selvin, P.C., Kumar, D.A., Hema, M. and Prakash, D., Physica B., 2011, 406: 3367

    Article  CAS  Google Scholar 

  21. Shukur, M.F., Ibrahim, F.M., Majid, N.A., Ithnin, R. and Kadir, M.F.Z., Phys. Scr., 2013, 88: 025601(9pp)

    Article  Google Scholar 

  22. Gondaliya, N., Kanchan, D.K., Sharma, P. and Jayswal, M.S., Polym. Compos., 2012, 33: 2195

    Article  CAS  Google Scholar 

  23. Sellam and Hashmi, S.A., J. Solid State Electrochem., 2012, 16: 3105

    Article  Google Scholar 

  24. Yeon, S.H., Kim, K.S., Choi, S., Cha, J.H. and Lee, H., J. Phys. Chem. B., 2005, 109: 17928

    Article  CAS  Google Scholar 

  25. Michael, M.S. and Prabaharan, S.R.S., J. Power Sources, 2004, 136: 408

    Article  CAS  Google Scholar 

  26. Xu, J.J., Ye, H. and Huang, J., Electrochem. Commun., 2005, 7: 1309

    Article  CAS  Google Scholar 

  27. Kazemi, H., Zandi, K. and Momenian, H., J. Nanostructures, 2015, 5: 25

    Article  Google Scholar 

  28. Rogulski, Z., Chotkowski, M. and Czerwinski, A., J. New Mat. Electr. Sys., 2006, 9: 333

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Johnsi.

Additional information

This work was financially supported by the National Centre for Nanoscience and Nanotechnology, University of Madras for SEM analysis and financial assistance received in the form of a research grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnsi, M., Suthanthiraraj, S.A. Compositional effect of ZrO2 nanofillers on a PVDF-co-HFP based polymer electrolyte system for solid state zinc batteries. Chin J Polym Sci 34, 332–343 (2016). https://doi.org/10.1007/s10118-016-1750-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-016-1750-3

Keywords

Navigation