Skip to main content
Log in

Nonisothermal crystallization and morphology of poly(butylene succinate)/layered double hydroxide nanocomposites

  • Paper
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Biodegradable poly(butylene succinate) (PBS) and layered double hydroxide (LDH) nanocomposites were prepared via melt blending in a twin-screw extruder. The morphology and dispersion of LDH nanoparticles within PBS matrix were characterized by transmission electron microscopy (TEM), which showed that LDH nanoparticles were found to be well distributed at the nanometer level. The nonisothermal crystallization behavior of nanocomposites was extensively studied using differential scanning calorimetry (DSC) technique at various cooling rates. The crystallization rate of PBS was accelerated by the addition of LDH due to its heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PBS remained almost unchanged. In kinetics analysis of nonisothermal crystallization, the Ozawa approach failed to describe the crystallization behavior of PBS/LDH nanocomposites, whereas both the modified Avrami model and the Mo method well represented the crystallization behavior of nanocomposites. The effective activation energy was estimated as a function of the relative degree of crystallinity using the isoconversional analysis. The subsequent melting behavior of PBS and PBS/LDH nanocomposites was observed to be dependent on the cooling rate. The POM showed that the small and less perfect crystals were formed in nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gan, Z., Abe, H., Kurokawa, H. and Doi. Y., Biomacromolecules, 2001, 2: 605

    Article  CAS  Google Scholar 

  2. Ray, S.S. and Okamoto, M., Prog. Polym. Sci., 2003, 28: 1539

    Article  CAS  Google Scholar 

  3. Schaefer, D.W. and Justice, R.S., Macromolecules, 2007, 40: 8501

    Article  CAS  Google Scholar 

  4. Kiliaris, P. and Papaspyrides, C.D., Prog. Polym. Sci., 2010, 35: 902

    Article  CAS  Google Scholar 

  5. Ray, S.S., Okamoto, K. and Okamoto, M., Macromolecules, 2003, 36, 2355

  6. Okamoto, K., Ray, S.S. and Okamoto, M., J. Polym. Sci. Part B: Polym. Phys., 2003, 41: 3160

    Article  CAS  Google Scholar 

  7. Ray, S.S., Okamoto, K. and Okamoto, M., J. Appl. Polym. Sci., 2006, 102: 777

    Article  CAS  Google Scholar 

  8. Chen, G.X., Kim, E.S. and Yoon, J.S., J. Appl. Polym. Sci., 2005, 98: 1727

    Article  CAS  Google Scholar 

  9. Chen, G.X. and Yoon, J.S., J. Polym. Sci. Part B: Polym. Phys., 2005, 43: 817

    Article  CAS  Google Scholar 

  10. Shih, Y.F., Chen, L.S. and Jeng, R.J., Polymer, 2008, 49: 4602

    Article  CAS  Google Scholar 

  11. Pramoda, K.P., Linh, N.T.T., Zhang, C. and Liu, T., J. Appl. Polym. Sci., 2009, 111: 2938

    Article  CAS  Google Scholar 

  12. Song, L. and Qiu, Z., Polym. Degrad. Stab., 2009, 94: 632

    Article  CAS  Google Scholar 

  13. Leroux, F. and Besse, J.P., Interface Sci. Technol., 2004, 1: 459

    Article  CAS  Google Scholar 

  14. Cui, Z. and Qu, B.J., Chinese J. Polym. Sci., 2010, 28(4): 563

    Article  CAS  Google Scholar 

  15. Wang, A.R., Bao, Y.Z., Weng, Z.X. and Huang, Z.M., Chinese J. Polym. Sci., 2007, 25(6): 573

    Article  CAS  Google Scholar 

  16. Xie, J.X., Bao, Y.Z. and Huang, Z.M., Acta Polymerica Sinica (in Chinese), 2009, (2): 118

    Article  Google Scholar 

  17. Costa, F.R., Abdel-Goad, M., Wagenknecht, U. and Heinrich, G., Polymer, 2005, 46: 4447

    Article  CAS  Google Scholar 

  18. Lonkar, S.P., Morlat-Therias, S., Caperaa, N., Leroux, F., Gardette, J.L. and Singh, R.P., Polymer, 2009, 50: 1505

    Article  CAS  Google Scholar 

  19. Peng, H., Tjiu, W.C., Shen, L., Huang, S., He, C. and Liu, T., Compos. Sci. Technol., 2009, 69: 991

    Article  CAS  Google Scholar 

  20. Sorrentino, A., Gorrasi, G., Tortora, M., Vittoria, V., Costantino, U., Marmottini, F. and Padella, F., Polymer, 2005, 46: 1601

    Article  CAS  Google Scholar 

  21. Yang, Z., Peng, H., Wang, W. and Liu, T., J. Appl. Polym. Sci., 2010, 116: 2658

    CAS  Google Scholar 

  22. Hsu, S.F., Wu, T.M. and Liao, C.S., J. Polym. Sci. Part B: Polym. Phys., 2007, 45: 995

    Article  CAS  Google Scholar 

  23. Dagnon, K.L., Chen, H.H., Innocentini-Mei, L.H. and D’souza, N.A., Polym. Int., 2009, 58: 133

    Article  CAS  Google Scholar 

  24. Pan, P., Zhu B., Dong, T. and Inoue, Y., J. Polym. Sci. Part B: Polym. Phys., 2008, 46: 2222

    Article  CAS  Google Scholar 

  25. Katiyar, V., Gerds, N., Koch, C.B., Risbo, J., Hansen, H.C.B. and Plackett, D., Polym. Degrad. Stab., 2010, 95: 2563

    Article  CAS  Google Scholar 

  26. Chiang, M.F. and Wu, T.M., Compos. Sci. Technol., 2010, 70: 110

    Article  CAS  Google Scholar 

  27. Zubitur, M., Mugica, A., Areizaga, J. and Cortázar, M., Colloid. Polym. Sci., 2010, 288: 809

    Article  CAS  Google Scholar 

  28. Zhou, Q., Verney, V., Commereuc, S., Chin, I.J. and Leroux, F., J. Colloid. Interf. Sci., 2010, 349: 127

    Article  CAS  Google Scholar 

  29. Di Lorenzo, M.L. and Silvestre, C., Prog. Polym. Sci., 1999, 24: 917

    Article  Google Scholar 

  30. Avrami, M.J., Chem. Phys., 1940, 8: 212

    CAS  Google Scholar 

  31. Ozawa, T., Polymer, 1971, 12: 150

    Article  CAS  Google Scholar 

  32. Jeziorny, A., Polymer, 1978, 19: 1142

    Article  CAS  Google Scholar 

  33. Liu, T., Mo, Z., Wang, S. and Zhang, H., Polym. Eng. Sci., 1997, 37: 568

    Article  CAS  Google Scholar 

  34. Vyazovkin, S., Macromol. Rapid Commun., 2002, 23: 771

    Article  CAS  Google Scholar 

  35. Friedman, H.J., J. Polym. Sci. Part C, 1964; 6: 183

    Google Scholar 

  36. Papageorgiou, G.Z., Achilias, D.S., Bikiaris, D.N. and Karayannidis, G.P., Thermochim. Acta, 2005, 427: 117

    Article  CAS  Google Scholar 

  37. Papageorgiou, G.Z., Achilias, D.S. and Bikiaris, D.N., Macromol. Chem. Phys., 2007, 208: 1250

    Article  CAS  Google Scholar 

  38. Luo, F.L., Zhang, X.Q., Gan, Z.H., Ji, J.H. and Wang, D.J., Acta Polymerica Sinica (in Chinese), 2011, (2): 132

    Article  Google Scholar 

  39. Wang, X., Zhou, J. and Li, L., Eur. Polym. J., 2007, 43: 3163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yong Wei  (魏志勇).

Additional information

This work was financially supported by the National High Technology Research and Development Program of China (863 Program No. 2009AA03Z319), the National Natural Science Foundation of China (Nos. 30870633, 31000427) and the Fundamental Research Funds for the Central Universities (DUT12JB09).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, Mq., Chen, Gy., Wei, Zy. et al. Nonisothermal crystallization and morphology of poly(butylene succinate)/layered double hydroxide nanocomposites. Chin J Polym Sci 31, 187–200 (2013). https://doi.org/10.1007/s10118-013-1200-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-013-1200-4

Keywords

Navigation