Skip to main content
Log in

New algebraic structures from Hermitian one-matrix model

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

Virasoro constraint is the operator algebra version of one-loop equation for a Hermitian one-matrix model, and it plays an important role in solving the model. We construct the realization of the Virasoro constraint from the Conformal Field Theory (CFT) method. From multi-loop equations of the one-matrix model, we get a more general constraint. It can be expressed in terms of the operator algebras, which is the Virasoro subalgebra with extra parameters. In this sense, we named as generalized Virasoro constraint. We enlarge this algebra with central extension, this is a new kind of algebra, and the usual Virasoro algebra is its subalgebra. And we give a bosonic realization of its subalgebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akemann, G.: Universal correlators for multi-arc complex matrix models. Nucl. Phys. B, 507, 475–500 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandrov, A., Mironov, A., Morozov, A.: Partition functions of matrix models as the first special functions of string theory I. finite size hermitian 1-matrix model. Int. J. Mod. Phys. A, 19, 4127–4165 (2004)

    Article  MATH  Google Scholar 

  3. Ambjern, J., Akemann, G.: New univerdal spectral correlators. J. Phys. A, 29, L555–L560 (1996)

    Article  MATH  Google Scholar 

  4. Ambjern, J., Makeenko, Yu.: Properties of loop equations for the hermitean matrix model and for twodimensional quantum gravity. Mod. Phys. Lett. A, 5, 1753–1763 (1990)

    Article  Google Scholar 

  5. Banks, T., Fischler, W., Shenker, S. H., et al.: M-theory as a matrix model: a conjucture. Phys. Rev. D, 55, 5112–5128 (1996)

    Article  Google Scholar 

  6. Bleher, P., Its, A., eds.: Random matrix and their applications, MSRI Research Publications 40, Cambridge Univ. Press, Combridge, 2001

    MATH  Google Scholar 

  7. Blumenhagen, R., Plauschinn, E.: Introduction to conformal field theory: with applications to string theory, Lect. Notes Phys. 779, Springer, Berlin Herdelberg, 2009

    Google Scholar 

  8. Bohigas, O.: Random matrix theories and chaotic dynamics. In: Chaos and Quantum physics, Proceedings of the Les Houches Summer School, North-Holland, 1991

    Google Scholar 

  9. Brezin, E., Kazakov, V., Serban, D., et al.: Applications of random matrices in physics, Proceeding of the NATO Advanced Study Institute on Application of Random Matrices in Physics Les Houches, Springer, Berlin, 2006

    Chapter  Google Scholar 

  10. Chekhov, L., Eynard, E.: Hermitian matrix model free energy: Feynman graph technique for all genera. J. High Energy Phys., 3, 014 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chekhov, L., Eynard, B., Orantin, N.: Free energy topological expansion for the 2-matrix model. J. High Energy Phys., 12, 053 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. David, F.: Planar diagrams, two-dimensional lattice gravity and surfaces models. Nucl. Phys. B, 257, 45–58 (2010)

    Article  MathSciNet  Google Scholar 

  13. David, F.: Loop equations and nonperturbative effects in two-dimensional quantum gravity. Mod. Phys. Lett. A, 5, 1019–1029 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eynard, E.: Topological expansion for the 1-hermitian matrix model correlation functions. J. High Energy Phys., 11, 031 (2004)

    Article  MathSciNet  Google Scholar 

  15. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Comm. Numb. Thoer. Phys., 1, 347–452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eynard, B., Orantin, N.: Topological recursion in enumerative geometry and random matrices. J. Phys. A, 42, 1–117 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eynard, E., An introduction to random matrices, Lectures given at Saclay, October 2000, note available at http://www-spht.cea.fr/articles/t01/014/

    Google Scholar 

  18. Eynard, B., Orantin, N.: Toplogcial expansion of the 2-matrix model correlation functions: diagrammatic rules for a residue formula. J. High Energy Phys., 12, 034 (2005)

    Article  Google Scholar 

  19. Eynard, B., Ferrer, A.: Topological expansion of the chain of matrices. J. High Energy Phys., 07, 096 (2009)

    Article  MathSciNet  Google Scholar 

  20. Eynard, B.: Formal matrix integrals and combinatorics of maps, In: Random Matrices, Random Processes and Integrable Systems, CRM Series in Mathematical Physics, Springer, New York, 2006

    Google Scholar 

  21. Ercolani, N. M., Mclarghlin, K.: Asymptotics and integrable systems for biorthogonal polynomials associated to a random two-matrix model. Physica D, 152–153, 232–268 (2001)

    Article  Google Scholar 

  22. Francesco, P. Di., Ginsparg, P., Zinn-Justin, Z.: 2D gravity and random matrices. Phys. Rept., 254, 1–133 (1993)

    Article  Google Scholar 

  23. Gerasimov, A., Marshakov, A., Mironov, A., et al.: Matrix models of 2-D gravity and Toda theory. Nucl. Phys. B, 357, 565–618 (1991)

    Article  MathSciNet  Google Scholar 

  24. Gross, D., Piran, T., Weinberg, T.: Two Dimensional Quantum Gravity and Random Surfaces (Jerusalem winter school), World Scientific, Singapore, 1992

    Google Scholar 

  25. Ginsparg, P., Moore, G.: Lectures on 2D gravity and 2D string theory. In: Recent Directions in Particle Theory, World Scientific, 1993

    Google Scholar 

  26. Guhr, T., Mueller-Groeling, A., Weidenmuller, H.: Random matrix theories in quantum physics: common concepts, Phys. Rep., 299, 189–425 (1998)

    Article  MathSciNet  Google Scholar 

  27. Itoyama, H., Matsuo, Y.: Noncritical Virasoro algebra of the D < 1 matrix model and the quantized string field. Phys. Lett. B, 255, 202–208 (1991)

    Article  MathSciNet  Google Scholar 

  28. Kharchev, S., Marshakov, A., Mironov, A., et al.: Conformal matrix models as an alternative to conventional multimatrix models. Nucl. Phys. B, 404, 717–750 (1993)

    Article  MATH  Google Scholar 

  29. Kostov, I: Matrix Models As Coformal Field Theories, In: E. B et al., ed, Proc. Les Houches 2004 “Applications of random matrices in physics”, pp. 459–487, Springer, 2004

    Google Scholar 

  30. Kac, V. G., Raina, A.: Bombay Lectures on Highest Weight Reprsentations of Infinite Dimensional Lie Alegebra, Advanced Series in Mathematical Physics 2 (1987)

    MATH  Google Scholar 

  31. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix airy function. Comm. Math. Phys., 147, 1–23 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Macdonald, I. G.: Symmetric Functions and Hall Polynomials, 2nd Edition, Claredon Press, Oxford, 1995

    MATH  Google Scholar 

  33. Marshakov, A., Mironov, A., Morozov, A.: Generalized matrix models as conformal field theories: discrete case. Phys. Lett. B, 265, 99–107 (1991)

    Article  MathSciNet  Google Scholar 

  34. Mironov, A., Morozov, A.: On the origin of Virasoro constraints in matrix models: Lagrangian approach. Phys. Lett. B, 252, 47–52 (1990)

    Article  MathSciNet  Google Scholar 

  35. Morozov, A.: Matrix model as integrable systems. In: Particles and Fields, CRM Series in Mathematical Physics, Springer, New York, 1999

    Book  Google Scholar 

  36. Metha, M. L.: Random Matrices, Academic Press, New York, 1991

    Google Scholar 

  37. Penner, R.: Perturbative series and the moduli spaces of Riemann surfaces. J. Diff. Geom., 27, 35–53 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Kavli Institute for Theoretical Physics China at the Chinese Academy of Sciences, where part of the work was done in the period of the program entitled “MathematicalMethods from Physics” hold at July 22–Sep. 5, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Mao Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X.M., Li, Y.P. & Meng, L.X. New algebraic structures from Hermitian one-matrix model. Acta. Math. Sin.-English Ser. 33, 1193–1205 (2017). https://doi.org/10.1007/s10114-017-6268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-017-6268-2

Keywords

MR(2010) Subject Classification

Navigation