Skip to main content
Log in

On strong metric dimension of graphs and their complements

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

A vertex x in a graph G strongly resolves a pair of vertices v,w if there exists a shortest x − w path containing v or a shortest x − v path containing w in G. A set of vertices SV (G) is a strong resolving set of G if every pair of distinct vertices of G is strongly resolved by some vertex in S. The strong metric dimension of G, denoted by sdim(G), is the minimum cardinality over all strong resolving sets of G. For a connected graph G of order n ≥ 2, we characterize G such that sdim(G) equals 1, n − 1, or n − 2, respectively. We give a Nordhaus-Gaddum-type result for the strong metric dimension of a graph and its complement: for a graph G and its complement \(\bar G\), each of order n ≥ 4 and connected, we show that \(2 \leqslant sdim\left( G \right) + sdim\left( {\bar G} \right) \leqslant 2\left( {n - 2} \right)\). It is readily seen that \(sdim\left( G \right) + sdim\left( {\bar G} \right) = 2\) if and only if n = 4; we show that, when G is a tree or a unicyclic graph, \(sdim\left( G \right) + sdim\left( {\bar G} \right) = 2\left( {n - 2} \right)\) if and only if n = 5 and \(G \cong \bar G \cong C_5\), the cycle on five vertices. For connected graphs G and \(\bar G\) of order n ≥ 5, we show that \(3 \leqslant sdim\left( G \right) + sdim\left( {\bar G} \right) \leqslant 2\left( {n - 3} \right)\) if G is a tree; we also show that \(4 \leqslant sdim\left( G \right) + sdim\left( {\bar G} \right) \leqslant 2\left( {n - 3} \right)\) if G is a unicyclic graph of order n ≥ 6. Furthermore, we characterize graphs G satisfying \(sdim\left( G \right) + sdim\left( {\bar G} \right) = 2\left( {n - 3} \right)\) when G is a tree or a unicyclic graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey, R. F., Cameron, P. J.: Base size, metric dimension and other invariants of groups and graphs. Bull. London Math. Soc., 43(2), 209–242 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cáceres, J., Hernando, C., Mora, M., et al.: On the metric dimension of Cartesian products of graphs. SIAM J. Discrete Math., 21(2), 423–441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chartrand, G., Eroh, L., Johnson, M. A., et al.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math., 105, 99–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chartrand, G., Zhang, P.: The theory and applications of resolvability in graphs. A survey. Congr. Numer., 160, 47–68 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Chartrand, G., Zhang, P.: Introduction to Graph Theory, McGraw-Hill, Kalamazoo, MI, 2004

    Google Scholar 

  6. Eroh, L., Feit, P., Kang, C. X., et al.: The effect of vertex or edge deletion on metric dimension of graphs. Submitted

  7. Eroh, L., Kang, C. X., Yi, E.: On metric dimension of graphs and their complements. J. Combin. Math. Combin. Comput., 83, 193–203 (2012)

    MathSciNet  Google Scholar 

  8. Eroh, L., Kang, C. X., Yi, E.: A comparison between the metric dimension and zero forcing number of trees and unicyclic graphs. Submitted

  9. Eroh, L., Kang, C. X., Yi, E.: A comparison between the metric dimension and zero forcing number of line graphs. Submitted

  10. Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979

    MATH  Google Scholar 

  11. Harary, F., Melter, R. A.: On the metric dimension of a graph. Ars Combin., 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  12. Hernando, C., Mora, M., Pelayo, I. M., et al.: Extremal graph theory for metric dimension and diameter. Electron. J. Combin., 17(1), #R30 (2010)

    MathSciNet  Google Scholar 

  13. Jannesari, M., Omoomi, B.: Characterization of n-vertex graphs with metric dimension n-3. ArXiv: 1103.3588v1

  14. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math., 70(3), 217–229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuziak, D., Yero, I. G., Rodríguez-Velázquez, J. A.: On the strong metric dimension of corona product graphs and join graphs. Discrete Appl. Math., 161(7–8), 1022–1027 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nordhaus, E. A., Gaddum, J. W.: On complementary graphs. Amer. Math. Monthly, 63, 175–177 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oellermann, O. R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discrete Appl. Math., 155, 356–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Poisson, C., Zhang, P.: The metric dimension of unicyclic graphs. J. Combin. Math. Combin. Comput., 40, 17–32 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Sebö, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res., 29(2), 383–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Slater, P. J.: Leaves of trees. Congr. Numer., 14, 549–559 (1975)

    MathSciNet  Google Scholar 

  21. Slater, P. J.: Dominating and reference sets in a graph. J. Math. Phys. Sci., 22, 445–455 (1998)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunjeong Yi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, E. On strong metric dimension of graphs and their complements. Acta. Math. Sin.-English Ser. 29, 1479–1492 (2013). https://doi.org/10.1007/s10114-013-2365-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-013-2365-z

Keywords

MR(2010) Subject Classification

Navigation