Skip to main content
Log in

On some Diophantine fourier series

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

We continue our study on arithmetical Fourier series by considering two Fourier series which are related to Diophantine analysis. The first one was studied by Hardy and Littlewood in connection with the classification of numbers and the second one was studied by Hartman and Wintner by Lebesgue integration theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hardy, G. H., Littlewood, J. E.: Some problems of Diophantine approximation. Trans. Cambridge Philos. Soc., 27, 519–534 (1923); Collected Papers of G. H. Hardy Vol. I, 212–226 (page 534 in the original paper which contains contents of the paper is omitted and as a result, the page numbers are stated in the Collected Papers incorrectly as 519–533)

    Google Scholar 

  2. Chowla, S., Walfisz, A.: Über eine Riemannsche identität. Acta Arith., 1, 87–112 (1935)

    MATH  Google Scholar 

  3. Hartman, P., Wintner, A.: On certain Fourier series involving sums of divisors. Trudy Tbillis. Mat. Obšč. im. G. A. Razmadze, 3, 113–119 (1938)

    Google Scholar 

  4. Wintner, A.: On Riemann’s fragement concerning elliptic modular functions. Amer. J. Math., 63, 628–634 (1941)

    Article  MathSciNet  Google Scholar 

  5. Kanemitsu, S., Ma, J., Tanigawa, Y.: Arithmetical identities and zeta-functions. Preprint

  6. Kanemitsu, S., Tsukada, H.: Vistas of Special Functions, World Scientific, Singapore, 2007

    Book  MATH  Google Scholar 

  7. Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function, 2nd ed., Oxford University Press, Oxford, 1951, second ed. 1986

    MATH  Google Scholar 

  8. Mikolás, M.: Mellinsche Transformation und Orthogonalität bei ζ(s, u); Verallgemeinerung der Riemannschen Funktionalgleichung von ζ(s). Acta Sci. Math. (Szeged), 17, 143–164 (1956)

    MATH  MathSciNet  Google Scholar 

  9. Erdélyi, A., Magnus, W., Oberhettinger, F., et al.: Higher Transcendental Functions, Vol 1, McGraw-Hill, New York, 1953

    Google Scholar 

  10. Davenport, H.: On some infinite series involving arithmetic functions. Quart. J. Math., 8, 8–13 (1937); Collected papers of H. Davenport IV, Academic Press, London, 1977, 1781–1786

    Article  Google Scholar 

  11. Davenport, H.: On some infinite series involving arithmetic functions II. Quart. J. Math., 8, 313–320 (1937); Collected papers of H. Davenport IV, Academic Press, London, 1977, 1787–1794

    Article  Google Scholar 

  12. Segal, S. L.: On an identity between infinite series of arithmetic functions. Acta Arith., 28(4), 345–348 (1975/76)

    MathSciNet  Google Scholar 

  13. Koksma, J. F.: Diophantische Approximationen. Springer-Verlag, Berlin-New York, 1974

    MATH  Google Scholar 

  14. Segal, S. L.: Riemann’s example of a continuous ‘nondifferentiable’ function. II. Math. Intelligencer, 1(2), 81–82 (1978/79)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Long Li.

Additional information

The first author is supported in part by NFSC Grant for Fundamental Research (No. 10671155) and NSF of Shaanxi Province (No. SJ08A22); the second author is supported in part by NNSF of China (Grant No. 10726051)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H.L., Ma, J. & Zhang, W.P. On some Diophantine fourier series. Acta. Math. Sin.-English Ser. 26, 1125–1132 (2010). https://doi.org/10.1007/s10114-010-8387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-010-8387-x

Keywords

MR(2000) Subject Classification

Navigation