Skip to main content

Advertisement

Log in

The participation of agricultural stakeholders in assessing regional vulnerability of cropland to soil water erosion in Austria

Regional Environmental Change Aims and scope Submit manuscript

Abstract

Scientists increasingly engage with stakeholders in order to develop more acceptable and applicable solutions particularly for climate change impact, adaptation, and vulnerability assessments. We present methodology, results, and experiences of a participation process in a regional soil water erosion vulnerability assessment in Austria. A peer group consisting of agricultural extension specialists, administration, and scientists identified the impacts of uncertain future precipitation on soil water erosion and the effectiveness of relevant soil conservation measures as the most crucial knowledge gap. We applied the bio-physical process model Environmental Policy Integrated Climate to simulate potential sediment yields using the Revised Universal Soil Loss Equation methodology and crop yields to calculate gross margins. The simulations have been performed for five climate change scenarios until 2040 and three alternative crop management practices. A heterogeneous expanded stakeholder group provided knowledge on regional crop production and management and thus contributed to a first validation of the model input data. Model results indicate an increase in severely erosion-prone cropland by 76 to 135 % with higher precipitation sums for 2040, on average. Furthermore, reduced tillage and cultivating winter cover crops have been identified as effective adaptation measures reducing mean sediment loss between 7 and 31 %, on average. A peer group validated model output with respect to relevance, plausibility, and usability of results and confirmed the usefulness of the results to inform the public debate on regional climate change impacts, adaptation, and vulnerability in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrachuk A, Smit B (2012) Community-based vulnerability assessment of Tuktoyaktuk, NWT, Canada to environmental and socio-economic changes. Reg Environ Change 12:867–885

    Article  Google Scholar 

  • Arnstein SR (1969) A ladder of citizen participation. J Am Plan Assoc 35:216–224

    Google Scholar 

  • Bammer G (2013) Disciplining interdisciplinarity: integration and implementation sciences for researching complex real-world problems. Australian National University E Press, Canberra. http://epress.anu.edu.au/titles/disciplining-interdisciplinarity

  • Bartels W-L, Furman CA, Diehl DC, Royce FS, Dourte DR, Ortiz BV, Zierden DF, Irani TA, Fraisse CW, Jones JW (2012) Warming up to climate change: a participatory approach to engaging with agricultural stakeholders in Southeast US. Reg Environ Change. doi:10.1007/s10113-012-0371-9

    Google Scholar 

  • Beers PJ, Boshuizen HPA, Kirschner PA, Gijselaers WH (2006) Common ground, complex problems and decision making. Group Decis Negot 15:529–556

    Article  Google Scholar 

  • Bergez JE, Carpy-Goulard F, Paradis S, Ridier A (2011) Participatory foresight analysis of the cash crop sector at the regional level: case study from southwestern France. Reg Environ Change 11:951–961

    Article  Google Scholar 

  • Biernacki P, Waldorf D (1981) Snowball sampling. Problems and techniques of chain referral sampling. Sociol Methods Res 10:141–163

    Google Scholar 

  • BMLFUW (2008) Deckungsbeiträge und Daten für die Betriebsplanung 2008, 2nd edn. Bundesministerium für Land—und Forstwirtschaft, Umwelt—und Wasserwirtschaft, Horn

    Google Scholar 

  • BMLFUW (2009) Agrarumweltmaßnahmen (M 214). In: Bundesministerium für Land—und Forstwirtschaft, Umwelt und Wasserwirtschaft (ed) Österreichisches Programm für die Entwicklung des Ländlichen Raums 2007–2013:224–387

  • Conservation Technology Information Center (CTIC) (2003) Conservation tillage and plant biotechnology. How new technologies can improve the environment by reducing the need to plow. CTIC, Indiana

    Google Scholar 

  • de la Vega-Leinert AC, Schröter D, Leemans R, Fritsch U, Pluimers J (2008) A stakeholder dialogue on European vulnerability. Reg Environ Change 8:109–124

    Article  Google Scholar 

  • Dilling L, Lemos MC (2011) Creating usable science: opportunities and constraints for climate knowledge use and their implications for science policy. Global Environ Change 21:680–689

    Article  Google Scholar 

  • Edelenbos J, van Buuren A, van Schie N (2011) Co-producing knowledge: joint knowledge production between experts, bureaucrats and stakeholders in Dutch water management projects. Environ Sci Polit 14:675–684

    Article  Google Scholar 

  • Eitzinger J, Kubu G, Alexandrov V, Utset A, Mihailovic DT, Lalic B, Trnka M, Zalud Z, Semeradova D, Ventrella D, Anastasiou DP, Medany M, Altaher S, Oljnik J, Lesny J, Nemeshko N, Nikolaev M, Simota C, Cojocaru G (2009) Adaptation of vulnerable regional agricultural systems in Europe to climate change—results from the ADAGIO project. Adv Sci Res 3:133–135

    Article  Google Scholar 

  • Evely AC, Fazey I, Pinard M, Lambin X (2008) The influence of philosophical perspectives in integrative research: a conservation case study in the cairngorms national. Ecol Soc 13(2):52. http://www.ecologyandsociety.org/vol13/iss2/art52/

    Google Scholar 

  • Fu B, Zhao W, Chen L, Lü Y, Wang D (2006) A multiscale soil loss evaluation index. Chin Sci Bull 51:448–456

    Article  Google Scholar 

  • Gbetibouo GA (2009) Understanding farmers’ perceptions and adaptations to climate change and variability: the case of the Limpopo Basin, South Africa. IFPRI Discussion Paper, 00849

  • Gobiet A, Suklitsch M, Leuprecht A, Peßensteiner S, Mendlik T, Truhetz H (2012) Klimaszenarien für die Steiermark bis 2050. Wegener Center for Climate and Global Change, University of Graz, Graz

    Google Scholar 

  • Gregrich RJ (2003) A note to researchers: communicating science to policy makers and practitioners. J Subst Abuse Treat 25:233–237

    Article  Google Scholar 

  • Hanger S, Pfenninger S, Dreyfus M, Patt A (2013) Knowledge and information needs of adaptation policy-makers: a European study. Reg Environ Change 13:91–101

    Article  Google Scholar 

  • Hegger D, Lamers M, Van Zeijl-Rozema A, Dieperink C (2012a) Conceptualising joint knowledge production in regional climate adaptation projects: success conditions and levers for action. Environ Sci Polit 18:52–65

    Article  Google Scholar 

  • Hegger D, Van Zeijl-Rozema A, Dieperink C (2012b) Toward design principles for joint knowledge production projects: lessons from the deepest polder of The Netherlands. Reg Environ Change. doi:10.1007/s10113-012-0382-6

    Google Scholar 

  • Hernández-Jover M, Gilmour J, Schembri N, Sysak T, Holyoake PK, Beilin R, Toribio JALML (2012) Use of stakeholder analysis to inform risk communication and extension strategies for improved biosecurity amongst small-scale pig producers. Prev Vet Med 104:258–270

    Article  Google Scholar 

  • Hollaender K, Loibl MC, Wilts A (2008) Management. In: Hoffmann-Riem H, Biber-Klemm S, Grossenbacher-Mansuy W, Joye D, Pohl C, Wiesmann U, Zemp E, Hirsch Hadorn G (eds) Handbook of transdisciplinary research. Springer Science+Business Media B.V., Berlin, pp 385–397

    Chapter  Google Scholar 

  • Izaurralde RC, Williams JR, McGill WB, Rosenberg NJ, Jakas MCQ (2006) Simulating soil C dynamics with EPIC: model description and testing against long-term data. Ecol Model 192:362–384

    Article  Google Scholar 

  • Jahn T (2008) Transdisciplinarity in the Practice of Research. Transdisziplinarität in der Forschungspraxis. In: Bergmann M, Schramm E (eds) Transdisziplinäre Forschung. Integrative Forschungsprozesse verstehen und bewerten. Campus Verlag, Frankfurt, pp 21–37

  • Khana S, Whiting ML, Ustin SL, Riano D, Litago J (2007) Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination. Remote Sens Environ 109(2):154–165

    Article  Google Scholar 

  • Klik A (2003) Einfluss unterschiedlicher Bodenbearbeitung auf Oberflächenabfluss, Bodenabtrag sowie auf Nährstoff—und Pestizidausträge. Österr Wasser—und Abfallwirtschaft 55:89–96

    CAS  Google Scholar 

  • Klik A, Eitzinger J (2010) Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria. J Agric Sci 148:529–541

    Article  Google Scholar 

  • Korfmacher KS (2001) The politics of participation in watershed modelling. Environ Manag 27:161–176

    Article  CAS  Google Scholar 

  • Krütli P, Stauffacher M, Flüeler T, Scholz RW (2006) Public involvement in repository site selection for nuclear waste: a dynamic view. In: Andersson K (ed) Proceedings of the 2006 VALDOR conference—values in decisions on risk. Congrex, Stockholm, pp 97–106

    Google Scholar 

  • Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12:519–539

    Article  Google Scholar 

  • Lang DJ, Wiek A, Bergmann M, Stauffacher M, Martens P, Moll P, Swilling M, Thomas CJ (2012) Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain Sci 7(Suppl 1):25–43

    Article  Google Scholar 

  • Levin K, Cashore B, Bernstein S, Auld G (2012) Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change. Policy Sci 45:123–152

    Article  Google Scholar 

  • Liu Y, Tao Y, Wan KY, Zhang GS, Liu DB, Xiong GY, Chen F (2012) Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China. Agric Water Manag 110:34–40

    Article  Google Scholar 

  • Midgley G (2000) Systemic intervention: philosophy, methodology, and practice. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Mullan D, Favis-Mortlock D, Fealy R (2012) Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agric Forest Meteorol 156:18–30

    Article  Google Scholar 

  • Nowotny H, Scott P, Gibbons M (2001) Re-thinking science. Knowledge and the public in an age of uncertainty. Polity Press, Cambridge

    Google Scholar 

  • Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34:96–112

    Article  Google Scholar 

  • Organisation for economic co-operation and development (OECD) (2001) Environmental indicators for agriculture, methods and results, vol 3. OECD Publications Service, Paris

    Google Scholar 

  • Orlandini S, Nejedlik P, Eitzinger J, Alexandrov V, Toulios L, Calanca P, Trnka M, Olesen JE (2008) Impacts of climate change and variability on European agriculture. Ann NY Acad Sci 1146:338–353

    Article  Google Scholar 

  • Pahl-Wostl C (2002) Participative and stakeholder-based policy design, evaluation and modeling processes. Integr Assess 3:3–14

    Article  Google Scholar 

  • Parry ML (2000) Assessment of potential effects and adaptations for climate change in Europe: the Europe ACACIA project. Jackson Environment Institute, University of East Anglia, Norwich

    Google Scholar 

  • Pohl C, Hirsch Hadorn G (2007) Principles for designing transdisciplinary research. Proposed by the Swiss Academies of Arts and Sciences. Oekom Verlag, München

    Google Scholar 

  • Prasannakumar V, Vijith H, Abionod S, Geetha N (2012) Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geosci Front 3:209–215

    Article  Google Scholar 

  • Prasuhn V (2012) On-farm effects of tillage and crops on soil erosion measured over 10 years in Switzerland. Soil Till Res 120:137–146

    Article  Google Scholar 

  • Reed MS, Graves A, Dandy N, Posthumus H, Hubacek K, Morris J, Prell C, Quinn CH, Stringer LC (2009) Who’s in and why? A typology of stakeholder analysis methods for natural resource management. J Environ Manag 90:1933–1949

    Article  Google Scholar 

  • Reganold JP, Lloyd FE, Unger YL (1987) Long-term effects of organic and conventional tillage on soil erosion. Nature 330:370–372

    Article  Google Scholar 

  • Reidsma P, Ewert F, Lansink AO, Leemans R (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32:91–102

    Article  Google Scholar 

  • Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE: revised universal soil loss equation. J Soil Water Conserv 46:30–33

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture. Agriculture Handbook No. 703

  • Rittel HWJ, Webber MM (1973) Dilemmas in a general theory of planning. Policy Sci 4:155–169

    Article  Google Scholar 

  • Rykiel EJ Jr (1996) Testing ecological models: the meaning of validation. Ecol Model 90:229–244

    Article  Google Scholar 

  • Scherhaufer P, Kirchner M, Lexer MJ, Lexer W, Mitter H, Rammer W (2012) Partizipation und Stakeholder-Beteiligung in der Pilotregion Mostviertel. WP3 Synthesebericht. RIVAS Regional Integrated Vulnerability Assessment for Austria. Research report, Wien

  • Scholz RW, Lang DJ, Wiek A, Walter AI, Stauffacher M (2006) Transdisciplinary case studies as a means of sustainability learning: historical framework and theory. Int J Sustain High Educ 7:226–251

    Article  Google Scholar 

  • Schönhart M, Schmid E, Schneider UA (2011a) CropRota—a crop rotation model to support integrated land use assessments. Eur J Agron 34:263–277

    Article  Google Scholar 

  • Schönhart M, Schauppenlehner T, Schmid E, Muhar A (2011b) Analysing maintenance and establishment of orchard meadows at farm and landscape level applying a spatially explicit integrated modelling approach. J Environ Plan Manag 54:115–143

    Article  Google Scholar 

  • Schönhart M, Schauppenlehner T, Schmid E, Muhar A (2011c) Integration of bio-physical and economic models to analyze management intensity and landscape structure effects at farm and landscape level. Agric Syst 104:122–134

    Article  Google Scholar 

  • Schwertmann U, Vogl W, Kain M (1987) Bodenerosion durch Wasser. Ulmer, Stuttgart

    Google Scholar 

  • Smit B, Wandel J (2006) Adaptation, adaptive capacity and vulnerability. Global Environ Change 16:282–292

    Article  Google Scholar 

  • Statistics Austria (2011) Statistisches Jahrbuch Österreich 2012. Wien

  • Statistics Austria (2012) Land—und forstwirtschaftliche Erzeugerpreise für Österreich ab 1998 Austria. http://www.statistik.at. Accessed 5 July 2012

  • Stephens EM, Edwards TL, Demeritt D (2012) Communicating probabilistic information from climate model ensembles—lessons from numerical weather prediction. WIREs Clim Change 3(5):409–426

    Article  Google Scholar 

  • Strauss P (2006) Integrated land use planning. Teilprojekt Evaluierung von Bodenerosion und Schwebstoffeintrag im Einzugsgebiet der Ybbs. Endbericht, Petzenkirchen

    Google Scholar 

  • Strauss F, Schmid E, Moltchanova E, Formayer H, Wang X (2012) Modelling climate change and biophysical impacts of crop production in the Austrian Marchfeld region. Clim Change 111(3):641–664

    Article  Google Scholar 

  • Strauss F, Formayer H, Schmid E (2013) High resolution climate data for Austria in the period 2008–2040 from a statistical climate change model. Int J Climatol 33:430–443

    Article  Google Scholar 

  • Toy TJ, Foster GR, Renard KG (2002) Soil erosion: processes, prediction, measurement and control. Wiley, New York

    Google Scholar 

  • Trabucchi M, Puente C, Comin FA, Olague G, Smith SV (2012) Mapping erosion risk at the basin scale in Mediterranean environment with opencast coal mines to target restoration actions. Reg Environ Change 12:675–687

    Article  Google Scholar 

  • Voinov A, Bousquet F (2010) Modelling with stakeholders. Environ Model Softw 25:1268–1281

    Article  Google Scholar 

  • Webb NP, Stokes CJ (2012) Climate change scenarios to facilitate stakeholder engagement in agricultural adaptation. Mitig Adapt Strateg Glob Change 17(8):957–973

    Article  Google Scholar 

  • Welp M, de la Vega-Leinert A, Stoll-Kleemann S, Jaeger CC (2006) Science-based stakeholder-dialogues: theories and tools. Global Environ Change 16:170–181

    Article  Google Scholar 

  • Wiek A (2007) Challenges of transdisciplinary research as interactive knowledge generation. Experiences from transdisciplinary case study research. GAIA 16:52–57

    Google Scholar 

  • Williams JR (1995) The EPIC model. In: Singh VP (ed) Computer models of watershed hydrology, water resources publications. Highlands Ranch, Colorado, pp 909–1000

    Google Scholar 

  • Wuelser G, Pohl C, Hirsch Hadorn G (2012) Structuring complexity for tailoring research contributions to sustainable development: a framework. Sustain Sci 7:81–93

    Article  Google Scholar 

  • Zhao WW, Fu BJ, Chen LD (2012) A comparison between soil loss evaluation index and the C-factor of RUSLE: a case study in the Loess Plateau of China. Hydrol Earth Syst Sci 16:2739–2748

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the research projects ‘RIVAS—Regional Integrated Vulnerability Assessment for Austria’ and ‘CAFEE—Climate change in agriculture and forestry: an integrated assessment of mitigation and adaptation measures in Austria’ funded by the Austrian Climate and Energy Fund within the Austrian Climate Research Programme as well as by the Doctoral School of Sustainable Development at the University of Natural Resources and Life Sciences, Vienna. We are especially thankful to the RIVAS project partners Wolfgang Lexer and Patrick Scherhaufer, the regional stakeholders and experts who have participated and shared valuable knowledge and insights as well as three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermine Mitter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitter, H., Kirchner, M., Schmid, E. et al. The participation of agricultural stakeholders in assessing regional vulnerability of cropland to soil water erosion in Austria. Reg Environ Change 14, 385–400 (2014). https://doi.org/10.1007/s10113-013-0506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-013-0506-7

Keywords

Navigation