Skip to main content
Log in

Stochastic optimization using a trust-region method and random models

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we propose and analyze a trust-region model-based algorithm for solving unconstrained stochastic optimization problems. Our framework utilizes random models of an objective function f(x), obtained from stochastic observations of the function or its gradient. Our method also utilizes estimates of function values to gauge progress that is being made. The convergence analysis relies on requirements that these models and these estimates are sufficiently accurate with high enough, but fixed, probability. Beyond these conditions, no assumptions are made on how these models and estimates are generated. Under these general conditions we show an almost sure global convergence of the method to a first order stationary point. In the second part of the paper, we present examples of generating sufficiently accurate random models under biased or unbiased noise assumptions. Lastly, we present some computational results showing the benefits of the proposed method compared to existing approaches that are based on sample averaging or stochastic gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. See [8] for details on well-poised sets and how they can be obtained.

References

  1. Bach, F., Moulines, E.: Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In: Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011. Proceedings of a Meeting Held 12–14 December 2011, Granada, Spain, pp. 451–459 (2011)

  2. Bandeira, A.S., Scheinberg, K., Vicente, L.N.: Convergence of trust-region methods based on probabilistic models. SIAM J. Optim. 24(3), 1238–1264 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billups, S.C., Graf, P., Larson, J.: Derivative-free optimization of expensive functions with computational error using weighted regression. SIAM J. Optim. 23(1), 27–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. Technical report. arXiv:1606.04838 (2016)

  5. Chang, K.H., Li, M.K., Wan, H.: Stochastic trust-region response-surface method (strong)—a new response-surface framework for simulation optimization. INFORMS J. Comput. 25(2), 230–243 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chen, R.: Stochastic derivative-free optimization of noisy functions. PhD thesis, Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, USA (2015)

  7. Conn, A.R., Scheinberg, K., Vicente, L.N.: Global convergence of general derivative-free trust-region algorithms to first- and second-order critical points. SIAM J. Optim. 20(1), 387–415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  9. Defazio, A., Bach, F., Lacoste-Julien, S.: Saga: a fast incremental gradient method with support for non-strongly convex composite objectives. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 1646–1654. Curran Associates Inc, Red Hook (2014)

    Google Scholar 

  10. Deng, G., Ferris, M.C.: Variable-number sample-path optimization. Math. Program. 117, 81–109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Durrett, R.: Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic Mathematics, p. 105. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  13. Ghadimi, S., Lan, G.: Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Math. Program. 156(1), 59–99 (2016)

  14. Ghadimi, S., Lan, G.: Stochastic first- and zeroth-order methods for nonconvex stochastic programming. SIAM J. Optim. 23(4), 2341–2368 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghosh, S., Glynn, P.W., Hashemi, F., Pasupathy, R.: On sampling roles in stochastic recursion. SIAM J. Optim. (under review)

  16. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.), Advances in Neural Information Processing Systems (NIPS 2013), vol. 26, pp. 315–323 (2013)

  17. Juditsky, A.B., Polyak, B.T.: Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30(4), 838–855 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 22(3), 462–466 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lan, G.: An optimal method for stochastic composite optimization. Math. Program. 133, 365397 (2012)

    Article  MathSciNet  Google Scholar 

  20. Larson, J., Billups, S.C.: Stochastic derivative-free optimization using a trust region framework. Comput. Optim. Appl. 64(3), 619645 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142(1), 215–241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Monro, S., Robbins, H.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pasupathy, R., Ghosh, S.: Simulation optimization: a concise overview and implementation guide. In: Topaloglu, H., Smith, J. C. (eds.) TutORials in Operations Research, chapter 7, pp. 122–150. INFORMS, Catonsville (2013)

  26. Powell, M.J.D.: UOBYQA: unconstrained optimization by quadratic approximation. Math. Program. 92(3), 555–582 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Richtarik, P., Takac, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(1,2), 1–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Robinson, S.M.: Analysis of sample-path optimization. Math. Oper. Res. 21(3), 513–528 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruszczynski, A., Shapiro, A. (eds.): Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10. Elsevier, Amsterdam (2003)

    Google Scholar 

  30. Shashaani, S., Hashemi, F.S., Pasupathy, R.: Astro-DF: a class of adaptive sampling trust-region algorithms for derivative-free simulation optimization (2015) (under review)

  31. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37, 332–341 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Spall, J.C.: Adaptive stochastic approximation by the simultaneous perturbation method. IEEE Trans. Autom. Control 45(10), 1839–1853 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley Series in Discrete Mathematics and Optimization. Wiley, London (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Scheinberg.

Additional information

R. Chen: The work of this author was partially supported by NSF Grant CCF-1320137 and AFOSR Grant FA9550-11-1-0239. M. Menickelly: The work of this author is partially supported by NSF Grants DMS 13-19356 and CCF-1320137. K. Scheinberg: The work of this author is partially supported by NSF Grants DMS 10-16571, DMS 13-19356, CCF-1320137, AFOSR Grant FA9550-11-1-0239, and DARPA Grant FA 9550-12-1-0406 negotiated by AFOSR.

Appendix

Appendix

See Algorithms 2, 3, 4 and 5.

figure b
figure c
figure d
figure e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Menickelly, M. & Scheinberg, K. Stochastic optimization using a trust-region method and random models. Math. Program. 169, 447–487 (2018). https://doi.org/10.1007/s10107-017-1141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1141-8

Mathematics Subject Classification

Navigation