Skip to main content
Log in

Projective re-normalization for improving the behavior of a homogeneous conic linear system

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we study the homogeneous conic system \(F: Ax = 0, x \in C\setminus \{0\}\) . We choose a point \(\bar s \in {\rm int}C^*\) that serves as a normalizer and consider computational properties of the normalized system \(F_{\bar s} : Ax = 0, \bar s^T x = 1, x \in C\) . We show that the computational complexity of solving F via an interior-point method depends only on the complexity value \(\vartheta\) of the barrier for C and on the symmetry of the origin in the image set \(H_{\bar s} := \{Ax {\bar s}^Tx = 1, x \in C\}\) , where the symmetry of 0 in \(H_{\bar s}\) is

$$ {\rm sym}(0, H_{\bar s}) := {\rm max}\{\alpha : y \in H_{\bar s} \Rightarrow -\alpha y \in H_{\bar s} \} .$$

We show that a solution of F can be computed in \(O(\sqrt{\vartheta}{\rm ln}(\vartheta/{\rm sym}(0, H_{\bar s}))\) interior-point iterations. In order to improve the theoretical and practical computation of a solution of F, we next present a general theory for projective re-normalization of the feasible region \(F_{\bar s}\) and the image set \(H_{\bar s}\) and prove the existence of a normalizer \({\bar s}\) such that \({\rm sym}(0,H_{\bar s}) \ge 1/m\) provided that F has an interior solution. We develop a methodology for constructing a normalizer \({\bar s}\) such that \({\rm sym}(0, H_{\bar s}) \ge 1/m\) with high probability, based on sampling on a geometric random walk with associated probabilistic complexity analysis. While such a normalizer is not itself computable in strongly-polynomial-time, the normalizer will yield a conic system that is solvable in \(O(\sqrt{\vartheta}{\rm ln}(m\vartheta))\) iterations, which is strongly-polynomial-time. Finally, we implement this methodology on randomly generated homogeneous linear programming feasibility problems, constructed to be poorly behaved. Our computational results indicate that the projective re-normalization methodology holds the promise to markedly reduce the overall computation time for conic feasibility problems; for instance we observe a 46% decrease in average IPM iterations for 100 randomly generated poorly-behaved problem instances of dimension 1,000  ×  5,000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belloni, A., Freund, R.M.: Proejctive pre-conditioners for improving the behavior of a homogeneous conic linear system. Working Paper OR375-05, MIT, Operations Research Center (2005)

  2. Belloni, A., Freund, R.M.: On the symmetry function of a convex set. Math. Program. (2006, to appear)

  3. Bertsimas D. and Vempala S. (2004). Solving convex programs by random walks. J. ACM 51(4): 540–556

    Article  MathSciNet  Google Scholar 

  4. Dyer M.E. and Frieze A.M. (1988). On the complexity of computing the volume of a polyhedron. SIAM J. Comput. Arch. 17(5): 967–974

    Article  MATH  MathSciNet  Google Scholar 

  5. Epelman M. and Freund R.M. (2002). A new condition measure, preconditioners and relations between different measures of conditioning for conic linear systems. SIAM J. Optim. 12(3): 627–655

    Article  MATH  MathSciNet  Google Scholar 

  6. Fishman G.S. (1994). Choosing sample path length and number of sample paths when starting at steady state. Oper. Res. Lett. 16(4): 209–220

    Article  MATH  Google Scholar 

  7. Freund R.M. (1989). Combinatorial analogs of Brouwer’s fixed-point theorem on a bounded polyhedron. J. Comb. Theory Ser. B 47(2): 192–219

    Article  MATH  MathSciNet  Google Scholar 

  8. Freund R.M. (1991). Projective transformation for interior-point algorithms and a superlinearly convergent algorithm for the w-center problem. Math. Program. 58: 203–222

    Article  MathSciNet  Google Scholar 

  9. Geyer C.J. (1992). Practical markov chain monte carlo. Stat. Sci. 7(4): 473–511

    Article  MathSciNet  Google Scholar 

  10. Grötschel M., Lovász L. and Schrijver A. (1994). Geometric Algorithms and Combiantorial Optimization. Springer, Berlin

    Google Scholar 

  11. Grünbaum B. (1967). Convex Polytopes. Wiley, New York

    MATH  Google Scholar 

  12. Hammer P.C. (1951). The centroid of a convex body. Proc. Am. Math. Soc. 5: 522–525

    Article  MathSciNet  Google Scholar 

  13. Kalai A. and Vempala S. (2006). Simulating annealing for convex optimization. Math. Oper. Res. 31(2): 253–266

    Article  MATH  MathSciNet  Google Scholar 

  14. Kelner, J.A., Spielman, D.A.: A randomized polynomial-time simplex algorithm for linear programming. Technical report. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (2006)

  15. Khachiyan L. (1996). Rounding of polytopes in the real number model of computation. Math. Oper. Res. 21(2): 307–320

    Article  MATH  MathSciNet  Google Scholar 

  16. Leindler L. (1972). On a certain converse of Hölder’s inequality ii. Acta Sci. Math. Szeged 33: 217–223

    MATH  MathSciNet  Google Scholar 

  17. Lovász, L., Vempala, S.: The geometry of logconcave functions and an O *(n 3) sampling algorithm. Microsoft Technical Report

  18. Lovász, L., Vempala, S.: Hit-and-run is fast and fun. Microsoft Technical Report

  19. Lovász, L., Vempala, S.: Where to start a geometric walk? Microsoft Technical Report

  20. Minkowski H. (1911). Allegemeine lehzätze über konvexe polyeder. Ges. Abh. Leipzog-Berlin 1: 103–121

    Google Scholar 

  21. Nesterov Y. and Nemirovskii A. (1993). Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Google Scholar 

  22. Nesterov Y. and Nemirovskii A. (2003). Central path and Riemannian distances. Université Catholique de Louvain, Belgium, Technical report, CORE Discussion Paper, CORE

    Google Scholar 

  23. Nesterov Y., Todd M.J. and Ye Y. (1999). Infeasible-start primal-dual methods and infeasibility detectors. Math. Program. 84: 227–267

    MATH  MathSciNet  Google Scholar 

  24. Prékopa A. (1973). Logarithmic concave measures and functions. Acta Sci. Math. Szeged 34: 335–343

    MATH  MathSciNet  Google Scholar 

  25. Prékopa A. (1973). On logarithmic concave measures with applications to stochastic programming. Acta Sci. Math. Szeged 32: 301–316

    Google Scholar 

  26. Renegar J. A (2001). Mathematical View of Interior-Point Methods in Convex Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Google Scholar 

  27. Rockafellar R.T. (1970). Convex Analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  28. Tütüncü, R.H., Toh, K.C., Todd, M.J.: SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming, version 3.0. Technical report, Available at http://www.math.nus.edu.sg/~mattohkc/sdpt3.html (2001)

  29. Zhang Y. and Gao L. (2003). On numerical solution of the maximum volume ellipsoid problem. SIAM J. Optim. 14(1): 53–76

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Freund.

Additional information

This research has been partially supported through the MIT-Singapore Alliance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belloni, A., Freund, R.M. Projective re-normalization for improving the behavior of a homogeneous conic linear system. Math. Program. 118, 279–299 (2009). https://doi.org/10.1007/s10107-007-0192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0192-7

Mathematics Subject Classification (2000)

Navigation