Skip to main content
Log in

Multiplier convergence in trust-region methods with application to convergence of decomposition methods for MPECs

  • Full Length Paper
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study piecewise decomposition methods for mathematical programs with equilibrium constraints (MPECs) for which all constraint functions are linear. At each iteration of a decomposition method, one step of a nonlinear programming scheme is applied to one piece of the MPEC to obtain the next iterate. Our goal is to understand global convergence to B-stationary points of these methods when the embedded nonlinear programming solver is a trust-region scheme, and the selection of pieces is determined using multipliers generated by solving the trust-region subproblem. To this end we study global convergence of a linear trust-region scheme for linearly-constrained NLPs that we call a trust-search method. The trust-search has two features that are critical to global convergence of decomposition methods for MPECs: a robustness property with respect to switching pieces, and a multiplier convergence result that appears to be quite new for trust-region methods. These combine to clarify and strengthen global convergence of decomposition methods without resorting either to additional conditions such as eventual inactivity of the trust-region constraint, or more complex methods that require a separate subproblem for multiplier estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anitescu M. (2005) On using the elastic mode in nonlinear programming approaches to mathematical programs with complementarity constraints. SIAM J. Optim. 15, 1203–1236

    Article  MATH  MathSciNet  Google Scholar 

  2. Anitescu, M., Tseng, P., Wright, S.J.: Elastic-mode algorithms for mathematical programs with equilibrium constraints: global convergence and stationarity properties. Technical ANL/MCS P1242-0405, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA, May 2005

  3. Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: complementarity constraints. Technical Report ORFE 02-02, Department of Operations Research and Financial Engineering, Princeton University, July 2002. Math. Program. Ser. A (to appear)

  4. Bertsekas D.P. (1995) Nonlinear Programming. Athena Scientific Belmont, Massachussets

    MATH  Google Scholar 

  5. Bonnans J.F., Shapiro A. (2000) Perturbation Analysis of Optimization Problems. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  6. Byrd R.H., Gould N.I.M., Nocedal J., Waltz R.H. (2004) An algorithm for nonlinear optimization using linear programming and equality constrained subproblems. Math. Program. 100, 27–48

    MATH  MathSciNet  Google Scholar 

  7. Byrd R.H., Gould N.I.M., Nocedal J., Waltz R.H. (2005) On the convergence of successive linear-quadratic programming algorithms. SIAM J. Optim. 16, 471–489

    Article  MATH  MathSciNet  Google Scholar 

  8. Calamai P.H., Moré J.J. (1987) Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116

    Article  MATH  Google Scholar 

  9. Chin, C.M., Fletcher, R.: Numerical performance of an SLP-filter algorithm that takes EQP steps. Technical Report NA/202, Department of Mathematics, University of Dundee, Dundee, UK (2001)

  10. Chin C.M., Fletcher R. (2003) On the global convergence of an SLP-filter algorithm that takes EQP steps. Math. Program. 96, 161–177

    Article  MATH  MathSciNet  Google Scholar 

  11. Conn A.R., Gould N.I.M., Toint Ph.L. Trust-region methods. MPS-SIAM (2000)

  12. de Miguel A.V., Friedlander M., Nogales F., Scholtes S. (2005) An interior-point method for MPECS based on strictly feasible relaxations. SIAM J. Optim. 16, 587–609

    Article  MathSciNet  Google Scholar 

  13. Facchinei F., Jiang H., Qi L. (1999) A smoothing method for mathematical programs with equilibrium constraints. Math. Program. 85, 81–106

    Article  MathSciNet  Google Scholar 

  14. Facchinei F., Pang J.S. (2003) Finite-dimensional variational inequalities and complementarity problems, Vol I Springer series in operations research. Springer, Berlin Heidelberg New York

    Google Scholar 

  15. Ferris, M.C., Ralph, D.: Projected gradient methods for nonlinear complementarity problems via normal maps. In: Du, D.Z., Qi, L., Womersley, R.S. (eds.) Recent Advances in Nonsmooth Optimization. World Scientific Publishing (1995)

  16. Fiacco A.V. Introduction to sensitivity and stability analysis in nonlinear programming. Math. Sci. Eng. 165, Academic, London (1983)

  17. Fischer A. (1999) Modified Wilson method for nonlinear programs with nonunique multipliers. Math. Oper. Res. 24, 699–727

    MATH  MathSciNet  Google Scholar 

  18. Fletcher R. (1987) Practical Methods of Optimization. Wiley, New York

    MATH  Google Scholar 

  19. Fletcher R., Leyffer S. (2004) Solving mathematical programs with complementarity constraints as nonlinear programs. Optim. Methods Softw. 19, 15–40

    Article  MATH  MathSciNet  Google Scholar 

  20. Fletcher R., Leyffer S., Ralph D., Scholtes S. (2006) Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J. Optim. 17, 259–286

    Article  MATH  MathSciNet  Google Scholar 

  21. Fletcher R., Sainz de la Maza E. (1989) Nonlinear programming and nonsmooth optimization by successive linear programming. Math. Program. 43, 235–256

    Article  MATH  MathSciNet  Google Scholar 

  22. Fukushima, M., Pang, J.S.: Convergence of a smoothing continuation method for mathematical programs with complementarity constraints. In: Théra, M., Tichatschke, R. (eds.) Ill-posed Variational Problems and Regularization Techniques, vol. 447 of Lecture Notes in Economics and Mathematical Systems, Berlin/Heidelberg, pp. 99–110 (1999)

  23. Fukushima M., Tseng P. (2002) An implementable active-set algorithm for computing a B-stationary point of a mathematical program with linear complementarity constraints. SIAM J. Optim. 12, 724–739

    Article  MATH  MathSciNet  Google Scholar 

  24. Gabriel S.A., Pang J.S. (1994) A trust region method for constrained nonsmooth equations. In: Hager W.W., Hearn D.W., Pardalos P.M. (eds) Large Scale Optimization: State of the Art. Kluwer, Dordrecht

    Google Scholar 

  25. Hu X., Ralph D. (2004) Convergence of a penalty method for mathematical programming with complementarity constraints. J. Optim. Theory Appl. 123, 365–390

    Article  MathSciNet  Google Scholar 

  26. Huang X.X., Yang X.Q., Zhu D.L. (2006) A sequential smooth penalization approach to mathematical programs with complementarity constraints. Num. Funct. Anal. Optim. 27, 71–98

    Article  MATH  MathSciNet  Google Scholar 

  27. Jiang H., Fukushima M., Qi L., Sun D. (1998) A trust region method for solving generalized complementarity problems. SIAM J. Optim. 8, 140–157

    Article  MATH  MathSciNet  Google Scholar 

  28. Jiang H., Ralph D. (1999) QPECgen, a MATLAB generator for mathematical programs with quadratic objectives and affine variational inequality constraints. Comput. Optim. Appl. 13, 25–59

    Article  MathSciNet  Google Scholar 

  29. Jiang H., Ralph D. (2000) Smooth SQP methods for mathematical programs with nonlinear complementarity constraints. SIAM J. Optim. 10, 779–808

    Article  MATH  MathSciNet  Google Scholar 

  30. Lin G.H., Fukushima M. (2006) Hybrid algorithms with active set identification for mathematical programs with complementarity constraints. J. Optim. Theory Appl. 128, 1–28

    Article  MATH  MathSciNet  Google Scholar 

  31. Liu X., Perakis G., Sun J. (2006) A robust SQP methods for mathematical programs with complementarity constraints. Comput. Optim. Appl. 34, 5–33

    Article  MATH  MathSciNet  Google Scholar 

  32. Luo Z.Q., Pang J.S., Ralph D. (1996) Mathematical Programs With Equilibrium Constraints. Cambridge University Press, Cambridge

    Google Scholar 

  33. Luo Z.Q., Pang J.S., Ralph D. (1998) Piecewise sequential quadratic programming for mathematical programs with nonlinear complementarity constraints. In: Migdalas A., Pardalos P.M., Värbrand P. (eds) Multilevel Optimization: Algorithms, Complexity and Applications. Kluwer, Norwell, pp. 209–229

    Google Scholar 

  34. Maier G., Giannessi F., Nappi A. (1982) Indirect identification of yield limits by mathematical programming. Eng. Struct. 4, 86–98

    Article  Google Scholar 

  35. Outrata J.V., Kocvara M., Zowe J. (1998) Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht

    MATH  Google Scholar 

  36. Polak E. (1971) Computational Methods in Optimization: A Unified Approach. Academic, New York

    Google Scholar 

  37. Raghunathan A.U., Biegler L.T. (2005) Interior point methods for mathematical programs with complementarity constraints. SIAM J. Optim. 15, 720–750

    Article  MATH  MathSciNet  Google Scholar 

  38. Ralph D., Wright S.J. (2004) Some properties of regularization and penalization schemes for MPECs. Optim. Methods Softw. 19, 527–556

    Article  MATH  MathSciNet  Google Scholar 

  39. Rockafellar R.T. (1970) Convex Analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  40. Scheel H., Scholtes S. (2000) Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25, 1–22

    MATH  MathSciNet  Google Scholar 

  41. Scholtes S. (2001) Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11, 918–936

    Article  MATH  MathSciNet  Google Scholar 

  42. Scholtes S. (2004) Nonconvex structures in nonlinear programming. Oper. Res. 52, 368–383

    Article  MathSciNet  Google Scholar 

  43. Scholtes S., Stöhr M. (1999) Exact penalization of mathematical programs with equilibrium constraints. SIAM J. Control Optim. 37, 617–652

    Article  MATH  MathSciNet  Google Scholar 

  44. Stöhr M. (1999) Nonsmooth Trust Region Methods and Their Applications to Mathematical Programs With Equilibrium Constraints. Shaker-Verlag, Aachen Germany

    Google Scholar 

  45. Zhang J., Liu G. (2001) A new extreme point algorithm and its application in PSQP algorithms for solving mathematical programs with linear complementarity constraints. J. Global Optim. 19, 335–361

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Giallombardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giallombardo, G., Ralph, D. Multiplier convergence in trust-region methods with application to convergence of decomposition methods for MPECs. Math. Program. 112, 335–369 (2008). https://doi.org/10.1007/s10107-006-0020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0020-5

Keywords

Mathematics Subject Classification (2000)

Navigation