Skip to main content

Advertisement

Log in

Low-level laser therapy alleviates periodontal age-related inflammation in diabetic mice via the GLUT1/mTOR pathway

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is a chronic age-related disease that was recently found as a secondary aging pattern regulated by the senescence associated secretory phenotype (SASP). The purpose of this study is to detect the potential efficacy and the specific mechanisms of low-level laser therapy (LLLT) healing of age-related inflammation (known as inflammaging) in diabetic periodontitis. Diabetic periodontitis (DP) mice were established by intraperitoneal streptozotocin (STZ) injection and oral P. gingivalis inoculation. Low-level laser irradiation (810 nm, 0.1 W, 398 mW/cm2, 4 J/cm2, 10 s) was applied locally around the periodontal lesions every 3 days for 2 consecutive weeks. Micro-CT and hematoxylin–eosin (HE) stain was analyzed for periodontal soft tissue and alveolar bone. Western blots, immunohistochemistry, and immunofluorescence staining were used to evaluate the protein expression changes on SASP and GLUT1/mTOR pathway. The expression of aging-related factors and SASP including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were reduced in periodontal tissue of diabetic mice. The inhibitory effect of LLLT on GLUT1/mTOR pathway was observed by detecting the related factors mTOR, p-mTOR, GLUT1, and PKM2. COX, an intracytoplasmic photoreceptor, is a key component of the anti-inflammatory effects of LLLT. After LLLT treatment a significant increase in COX was observed in macrophages in the periodontal lesion. Our findings suggest that LLLT may regulate chronic low-grade inflammation by modulating the GLUT1/mTOR senescence-related pathway, thereby offering a potential treatment for diabetic periodontal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun H (2022) IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119

    Article  PubMed  Google Scholar 

  2. Löe H (1993) Periodontal disease. The sixth complication of diabetes mellitus. Diabetes Care 16:329–334

    Article  PubMed  Google Scholar 

  3. Lakschevitz F, Aboodi G, Tenenbaum H, Glogauer M (2011) Diabetes and periodontal diseases: interplay and links. CDR 7:433–439. https://doi.org/10.2174/157339911797579205

    Article  Google Scholar 

  4. Prattichizzo F, De Nigris V, Spiga R et al (2018) Inflammageing and metaflammation: the yin and yang of type 2 diabetes. Ageing Res Rev 41:1–17. https://doi.org/10.1016/j.arr.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  5. Midha A, Pan H, Abarca C et al (2021) 10-Unique human and mouse β-cell senescence-associated secretory phenotype (SASP) reveal conserved signaling pathways and heterogeneous factors. Diabetes 70:1098–1116. https://doi.org/10.2337/db20-0553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ikegami K, Yamashita M, Suzuki M, et al (2023) Cellular senescence with SASP in periodontal ligament cells triggers inflammation in aging periodontal tissue. Aging. https://doi.org/10.18632/aging.204569

  7. Chen Z, Haus JM, Chen L, et al (2022) Inhibition of CCL28/CCR10-mediated eNOS downregulation improves skin wound healing in the obesity-induced mouse model of type 2 diabetes. Diabetes db211108. https://doi.org/10.2337/db21-1108

  8. Yu S, Zhao X, Zhang Y et al (2022) Clinical effectiveness of adjunctive diode laser on scaling and root planing in the treatment of periodontitis: is there an optimal combination of usage mode and application regimen? A systematic review and meta-analysis. Lasers Med Sci 37:759–769. https://doi.org/10.1007/s10103-021-03412-z

    Article  PubMed  Google Scholar 

  9. Ren C, McGrath C, Jin L et al (2017) The effectiveness of low-level laser therapy as an adjunct to non-surgical periodontal treatment: a meta-analysis. J Periodont Res 52:8–20. https://doi.org/10.1111/jre.12361

    Article  CAS  Google Scholar 

  10. Kinane DF, Stathopoulou PG, Papapanou PN (2017) Periodontal diseases. Nat Rev Dis Primers 3:17038. https://doi.org/10.1038/nrdp.2017.38

    Article  PubMed  Google Scholar 

  11. Choung H-W, Lee S-H, Ham AR et al (2019) Effectiveness of low-level laser therapy with a 915 nm wavelength diode laser on the healing of intraoral mucosal wound: an animal study and a double-blind randomized clinical trial. Medicina 55:405. https://doi.org/10.3390/medicina55080405

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qadri T, Miranda L, Tuner J, Gustafsson A (2005) The short-term effects of low-level lasers as adjunct therapy in the treatment of periodontal inflammation. J Clin Periodontol 32:714–719. https://doi.org/10.1111/j.1600-051X.2005.00749.x

    Article  CAS  PubMed  Google Scholar 

  13. Mrasori S, Popovska M, Rusevska B et al (2021) Effects of low level laser therapy (LLLT) on serum values of interleukin 6 (IL-6) in patients with periodontitis and type 2 diabetes mellitus (T2DM). Acta Inform Med 29:59. https://doi.org/10.5455/aim.2021.29.59-64

    Article  PubMed  PubMed Central  Google Scholar 

  14. Silva DNA, Cruz NTS, Martins AA et al (2023) Probiotic Lactobacillus rhamnosus EM1107 prevents hyperglycemia, alveolar bone loss, and inflammation in a rat model of diabetes and periodontitis. J Periodontol 94:376–388. https://doi.org/10.1002/JPER.22-0262

    Article  CAS  PubMed  Google Scholar 

  15. Wang Q, Nie L, Zhao P et al (2021) Diabetes fuels periodontal lesions via GLUT1-driven macrophage inflammaging. Int J Oral Sci 13:11. https://doi.org/10.1038/s41368-021-00116-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Magliano DJ, Chen L, Islam RM et al (2021) Trends in the incidence of diagnosed diabetes: a multicountry analysis of aggregate data from 22 million diagnoses in high-income and middle-income settings. Lancet Diabetes Endocrinol 9:203–211. https://doi.org/10.1016/S2213-8587(20)30402-2

    Article  PubMed  Google Scholar 

  17. Preshaw PM, Alba AL, Herrera D et al (2012) Periodontitis and diabetes: a two-way relationship. Diabetologia 55:21–31. https://doi.org/10.1007/s00125-011-2342-y

    Article  CAS  PubMed  Google Scholar 

  18. Ohsugi Y, Niimi H, Shimohira T et al (2020) In vitro cytological responses against laser photobiomodulation for periodontal regeneration. IJMS 21:9002. https://doi.org/10.3390/ijms21239002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Soi S, Bains VK, Srivastava R, Madan R (2021) Comparative evaluation of improvement in periodontal and glycemic health status of type 2 diabetes mellitus patients after scaling and root planing with or without adjunctive use of diode laser. Lasers Med Sci 36:1307–1315. https://doi.org/10.1007/s10103-021-03261-w

    Article  PubMed  Google Scholar 

  20. Kreisler M, Kohnen W, Marinello C et al (2003) Antimicrobial efficacy of semiconductor laser irradiation on implant surfaces. Int J Oral Maxillofac Implants 18:706–711

    PubMed  Google Scholar 

  21. Lee HS, Lee Y, Jeong U et al (2020) Transoral low-level laser therapy via a cylindrical device to treat oral ulcers in a rodent model. Lasers Surg Med 52:647–652. https://doi.org/10.1002/lsm.23203

    Article  PubMed  Google Scholar 

  22. Gururaj S, Shankar S, Parveen F et al (2022) Assessment of healing and pain response at mandibular third molar extraction sites with and without pre- and postoperative photobiomodulation at red and near-infrared wavelengths: a clinical study. J Pharm Bioall Sci 14:470. https://doi.org/10.4103/jpbs.jpbs_675_21

    Article  Google Scholar 

  23. Polak D, Sanui T, Nishimura F (2000) Shapira L (2020) Diabetes as a risk factor for periodontal disease—plausible mechanisms. Periodontol 83:46–58. https://doi.org/10.1111/prd.12298

    Article  Google Scholar 

  24. Shetty B, Divakar DD, Jameel AHA et al (2023) Effect of non-surgical periodontal therapy with adjunct photodynamic therapy on periodontal and glycemic statuses in prediabetic patients with periodontal disease. Photodiagn Photodyn Ther 42:103362. https://doi.org/10.1016/j.pdpdt.2023.103362

    Article  Google Scholar 

  25. Pulivarthi P, Chava V, Gunupati S (2022) Salivary tumor necrosis factor-alpha levels in periodontitis associated with diabetes mellitus after low level laser therapy as an adjunct to scaling and root planning: a randomized clinical trial. J Indian Soc Periodontol 26:236. https://doi.org/10.4103/jisp.jisp_150_21

    Article  PubMed  PubMed Central  Google Scholar 

  26. Preshaw PM, Foster N (2000) Taylor JJ (2007) Cross-susceptibility between periodontal disease and type 2 diabetes mellitus: an immunobiological perspective. Periodontol 45:138–157. https://doi.org/10.1111/j.1600-0757.2007.00221.x

    Article  Google Scholar 

  27. Shultis WA, Weil EJ, Looker HC et al (2007) Effect of periodontitis on overt nephropathy and end-stage renal disease in type 2 diabetes. Diabetes Care 30:306–311. https://doi.org/10.2337/dc06-1184

    Article  PubMed  Google Scholar 

  28. Aoki A, Mizutani K, Schwarz F et al (2000) (2015) Periodontal and peri-implant wound healing following laser therapy. Periodontol 68:217–269. https://doi.org/10.1111/prd.12080

    Article  Google Scholar 

  29. Borgnakke WS, Anderson PF, Shannon C, Jivanescu A (2015) Is there a relationship between oral health and diabetic neuropathy? Curr Diab Rep 15:93. https://doi.org/10.1007/s11892-015-0673-7

    Article  PubMed  Google Scholar 

  30. Lalla E, Papapanou PN (2011) Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol 7:738–748. https://doi.org/10.1038/nrendo.2011.106

    Article  CAS  PubMed  Google Scholar 

  31. Chen S, Zhou D, Liu O et al (2022) Cellular senescence and periodontitis: mechanisms and therapeutics. Biology 11:1419. https://doi.org/10.3390/biology11101419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Cecco M, Ito T, Petrashen AP et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78. https://doi.org/10.1038/s41586-018-0784-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barutta F, Bellini S, Durazzo M, Gruden G (2022) Novel insight into the mechanisms of the bidirectional relationship between diabetes and periodontitis. Biomedicines 10:178. https://doi.org/10.3390/biomedicines10010178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP (2019) Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. https://doi.org/10.26402/jpp.2019.6.01

  35. Freemerman AJ, Johnson AR, Sacks GN et al (2014) Metabolic reprogramming of macrophages. J Biol Chem 289:7884–7896. https://doi.org/10.1074/jbc.M113.522037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Z, Deng X, Liu Y et al (2019) PKM2, function and expression and regulation. Cell Biosci 9:52. https://doi.org/10.1186/s13578-019-0317-8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tu C, Wang L, Wei L (2022) The role of PKM2 in diabetic microangiopathy. DMSO 15:1405–1412. https://doi.org/10.2147/DMSO.S366403

    Article  Google Scholar 

  38. Grant MM (2021) Pyruvate kinase, inflammation and periodontal disease. Pathogens 10:784. https://doi.org/10.3390/pathogens10070784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hasan D, Gamen E, Abu Tarboush N et al (2018) PKM2 and HIF-1α regulation in prostate cancer cell lines. PLoS One 13:e0203745. https://doi.org/10.1371/journal.pone.0203745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abdelhalim NM, Abdelbasset WK, Alqahtani BA, Samhan AF (2020) Low-level laser therapy for diabetic dermopathy in patients with type 2 diabetes: a placebo controlled pilot study. J Lasers Med Sci 11:481–485. https://doi.org/10.34172/jlms.2020.75

    Article  PubMed  PubMed Central  Google Scholar 

  41. Houreld NN (2015) Healing of diabetic ulcers using photobiomodulation. Photomed Laser Surg 33:237–239. https://doi.org/10.1089/pho.2015.9847

    Article  PubMed  Google Scholar 

  42. Albuquerque-Pontes GM, Vieira RDP, Tomazoni SS et al (2015) Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30:59–66. https://doi.org/10.1007/s10103-014-1616-2

    Article  PubMed  Google Scholar 

  43. Obradović R, Kesić L, Mihailović D et al (2012) Low-level lasers as an adjunct in periodontal therapy in patients with diabetes mellitus. Diabetes Technol Ther 14:799–803. https://doi.org/10.1089/dia.2012.0027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 81870779) and the Chengdu Science and Technology Program (2022-YF05-01760-SN).

Author information

Authors and Affiliations

Authors

Contributions

A.C., K.Z., Y.D., and Qi W. designed the project. Qi W. final approval of the project. A.C., K.Z, Y.S, H.Z., and Z.Y. performed most of the experiments. N.J. helped with experiments. A.C., K.Z., Y.S., and X.S. analyzed and compiled the data. A.C. and K.Z. reviewed literature. A.C. prepared the initial draft of the manuscript, the illustrations, and the final draft of the manuscript, J.C., Y.D., and Qi W. critically revised the manuscript. Each author agreed to be responsible for all aspects of the work and granted their final approval.

Corresponding author

Correspondence to Qi Wang.

Ethics declarations

Ethics approval

The Sichuan University Ethics Committee registered and approved the study protocol (protocol number WCHSIRB-D-2020–357) and all experimental protocols in the study were conducted and operated in accordance with the 1964 Declaration of Helsinki and its subsequent amendments in 2013.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, A., Sun, Y., Zhu, K. et al. Low-level laser therapy alleviates periodontal age-related inflammation in diabetic mice via the GLUT1/mTOR pathway. Lasers Med Sci 39, 36 (2024). https://doi.org/10.1007/s10103-024-03987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-024-03987-3

Keywords

Navigation