Skip to main content

Advertisement

Log in

Enhanced antibacterial activity of cadmium telluride nanocrystals in combination with 940-nm laser diode on anaerobic bacteria P. gingivalis: an in vitro study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Periodontal disease is one of the most common chronic diseases in the oral cavity that causes tooth loss. Root scaling and leveling cannot eliminate all periodontal pathogens, and the use of antibacterial agents or lasers can increase the efficiency of mechanical methods. The aim of this study was to evaluate and compare the antibacterial activity of cadmium telluride nanocrystals in combination with 940-nm laser diode. Cadmium telluride nanocrystals were prepared by a green route of synthesis in aqueous medium. The results of this study showed that cadmium telluride nanocrystals significantly inhibit the growth of P. gingivalis. The antibacterial property of this nanocrystal increases with increasing its concentration, laser diode 940-nm irradiation and with increasing the time. It was shown that the antibacterial activity of combination of 940-nm laser diode and cadmium telluride nanocrystals is greater than the effect of either alone and can have a similar effect with its long-term presence of microorganisms. This is very important because it is not possible to use these nanocrystals in the mouth and in the periodontal bag for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lohana M, Suragimath G, Abbayya K, Varma S, Zope S, Kale V (2015) A study to assess and correlate osteoporosis and periodontitis in selected population of Maharashtra. J Clin Diagn Res: JCDR. 9(6):ZC46

    PubMed  PubMed Central  Google Scholar 

  2. Newman MG, Takei HH, Klokkevold PR, Carranza FA (2019) Newman and Carranza’s clinical periodontology, 13th edn. Elsevier

  3. Bral M, Brownstein C (1988) Antimicrobial agents in the prevention and treatment of periodontal diseases. Dent Clin North Am 32(2):217–241

    Article  CAS  PubMed  Google Scholar 

  4. Greenberg MSGM, Ship JA (2008) Burket’s oral medicine, 11th edn. Decker Publications, Philadelphia

    Google Scholar 

  5. Bao K, Belibasakis GN, Thurnheer T, Aduse-Opoku J, Curtis MA, Bostanci N (2014) Porphyromonas gingivalis gingipains in multi-species biofilm formation. BMC Microbiol 14(1):1–8

    Article  Google Scholar 

  6. Bodet C, Chandad F, Grenier D (2006) Pathogenic potential of Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, the red bacterial complex associated with periodontitis. Parodontol 55(3–4):154–162

    Google Scholar 

  7. Lindhe J, Lang NP, Karring T (2008) Clinical periodontology and implant dentistry, ‎5th edn. Wiley-Blackwell

  8. Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8(2):263–271

    Article  CAS  PubMed  Google Scholar 

  9. Kinane DF, Galicia JC, Gorr S-U, Stathopoulou PG, Benakanakere MP (2008) gingivalis interactions with epithelial cells. Front Biosci 13:966–984

    Article  CAS  PubMed  Google Scholar 

  10. Henry LG, McKenzie RM, Robles A, Fletcher HM (2012) Oxidative stress resistance in Porphyromonas gingivalis. Future Microbiol 7(4):497–512

    Article  CAS  PubMed  Google Scholar 

  11. Heitz-Mayfield LJ, Lang NP (2013) Surgical and nonsurgical periodontal therapy. Learned and unlearned concepts. Periodontology 2000 62(1):218–31

    Article  PubMed  Google Scholar 

  12. Tammaro S, Wennström JL, Bergenholtz G (2000) Root-dentin sensitivity following non-surgical periodontal treatment. J Clin Periodontol 27(9):690–697

    Article  CAS  PubMed  Google Scholar 

  13. Giannelli M, Bani D, Viti C, Tani A, Lorenzini L, Zecchi-Orlandini S et al (2012) Comparative evaluation of the effects of different photoablative laser irradiation protocols on the gingiva of periodontopathic patients. Photomed Laser Surg 30(4):222–230

    Article  CAS  PubMed  Google Scholar 

  14. Freitas PM, Simoes A (2015) Lasers in dentistry: guide for clinical practice. Wiley

    Book  Google Scholar 

  15. Wainwright M (2003) Local treatment of viral disease using photodynamic therapy. Int J Antimicrob Agents 21(6):510–520

    Article  CAS  PubMed  Google Scholar 

  16. Alharbi KK, Al-Sheikh YA (2014) Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J Biol Sci 21(2):109–117

    Article  PubMed  Google Scholar 

  17. Bhardwaj A, Bhardwaj A, Misuriya A, Maroli S, Manjula S, Singh AK (2014) Nanotechnology in dentistry: Present and future. J Int Oral Health: JIOH 6(1):121

    PubMed  PubMed Central  Google Scholar 

  18. Zare H, Marandi M, Fardindoost S, Sharma VK, Yeltik A, Akhavan O et al (2015) High-efficiency CdTe/CdS core/shell nanocrystals in water enabled by photo-induced colloidal hetero-epitaxy of CdS shelling at room temperature. Nano Res 8(7):2317–2328

    Article  CAS  Google Scholar 

  19. Courtney CM, Goodman SM, McDaniel JA, Madinger NE, Chatterjee A, Nagpal P (2016) Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat Mater 15(5):529–534

    Article  CAS  PubMed  Google Scholar 

  20. Miles AA, Misra S, Irwin J (1938) The estimation of the bactericidal power of the blood. Epidemiol Infect 38(6):732–749

    Article  CAS  Google Scholar 

  21. Ayyaswamy A, Ganapathy S, Ramasamy J (2014) In situ synthesis of CdTe:CdS quantum dot nanocomposites for photovoltaic applications. Mater Sci Semicond Process 25:238–243

    Article  Google Scholar 

  22. Percival SL, Francolini I, Donelli G (2015) Low-level laser therapy as an antimicrobial and antibiofilm technology and its relevance to wound healing. Future Microbiol 10(2):255–272

    Article  CAS  PubMed  Google Scholar 

  23. Odor AA, Bechir ES, Violant D, Badea V (2018) Antimicrobial effect of 940 nm diode laser based on photolysis of hydrogen peroxide in the treatment of periodontal disease. Rev Chim 69(8):2081–2088

    Article  CAS  Google Scholar 

  24. Teerakapong A, Damrongrungruang T, Sattayut S, Morales NP, Tantananugool S (2017) Efficacy of erythrosine and cyanidin-3-glucoside mediated photodynamic therapy on Porphyromonas gingivalis biofilms using green light laser. Photodiagn Photodyn Ther 20:154–158

    Article  CAS  Google Scholar 

  25. Rajendiran K, Zhao Z, Pei D-S, Fu A (2019) Antimicrobial activity and mechanism of functionalized quantum dots. Polymers 11(10):1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sánchez M, Toledano-Osorio M, Bueno J, Figuero E, Toledano M, Medina-Castillo A et al (2019) Antibacterial effects of polymeric PolymP-n Active nanoparticles. An in vitro biofilm study. Dental Mater 35(1):156–68

    Article  Google Scholar 

  27. Liu J, Lu S, Tang Q, Zhang K, Yu W, Sun H et al (2017) One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale 9(21):7135–7142

    Article  CAS  PubMed  Google Scholar 

  28. Lu Z, Li CM, Bao H, Qiao Y, Toh Y, Yang X (2008) Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 24(10):5445–5452

    Article  CAS  PubMed  Google Scholar 

  29. Tosun E, Tasar F, Strauss R, Kıvanc DG, Ungor C (2012) Comparative evaluation of antimicrobial effects of Er: YAG, diode, and CO2 lasers on titanium discs: an experimental study. J Oral Maxillofac Surg 70(5):1064–1069

    Article  PubMed  Google Scholar 

  30. Umeda M, Tsuno A, Okagami Y, Tsuchiya F, Izumi Y, Ishikawa I (2011) Bactericidal effects of a high-power, red light-emitting diode on two periodontopathic bacteria in antimicrobial photodynamic therapy in vitro. J Investig Clin Dent 2(4):268–274

    Article  PubMed  Google Scholar 

  31. Amaroli A, Barbieri R, Signore A, Marchese A, Parker S, De Angelis N et al (2020) Simultaneous photoablative and photodynamic 810-nm diode laser therapy as an adjunct to non-surgical periodontal treatment: an in-vitro study. Minerva Stomatol 69(1):1–7

    Article  PubMed  Google Scholar 

  32. Matarese G, Ramaglia L, Cicciu M, Cordasco G, Isola G (2017) The effects of diode laser therapy as an adjunct to scaling and root planing in the treatment of aggressive periodontitis: A 1-year randomized controlled clinical trial. Photomed Laser Surg 35(12):702–709

    Article  CAS  PubMed  Google Scholar 

  33. Kotoku Y, Kato J, Akashi G, Hirai Y, Ishihara K (2009) Bactericidal effect of a 405-nm diode laser on Porphyromonas gingivalis. Laser Phys Lett 6(5):388

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BP and AF designed the study. SD carried out all data collection. BP, SD, HZ, MYA, JM-H, and AF edited and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abbas Farmany.

Ethics declarations

Informed consent

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poormoradi, B., Dehghani, S., Zare, H. et al. Enhanced antibacterial activity of cadmium telluride nanocrystals in combination with 940-nm laser diode on anaerobic bacteria P. gingivalis: an in vitro study. Lasers Med Sci 38, 112 (2023). https://doi.org/10.1007/s10103-023-03773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03773-7

Keywords

Navigation