Skip to main content

Advertisement

Log in

Effect of low-level light therapy before radiotherapy in oral squamous cell carcinoma: An in vitro study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Radiation therapy for head and neck squamous cell carcinoma (HNSCC) is associated with several complications. Although photobiomodulation (PBM) has radioprotective effects in normal tissue, it could also enhance the growth of neoplastic cells. Thus, the present study aimed to investigate the cellular response of oral squamous cell carcinoma with pre-exposure to low-level phototherapy before radiotherapy. SCC9, Cal-27, A431, and HaCaT cell lines were subjected to low-level light therapy and radiotherapy. The cells were treated with a single energy density (300 J/cm2) of a light-emitting diode (660 nm) prior to ionizing radiation at different doses (0, 2, 4, and 6 Gy). After 24 h, wound scratch, proliferation, clonogenic cell survival, cell death, and reactive oxygen species (ROS) analyses were performed to evaluate cell response. The cell lines pre-exposed to PBM at the analyzed dosage were radiosensitive. The treatment significantly reduced cell proliferation and clonogenic cell survival. Migration and cell death assays also revealed positive results, with the treatment group showing lower rate of migration and higher cell death than did the control group. Moreover, PBM effectively increased the intracellular levels of ROS. PBM at 300 J/cm2 is a promising radiosensitizing modality to reduce the radiation dose and avoid the intolerable side effects of radiotherapy for HNSCC, thus increasing the probability of successful treatment. However, further studies are needed to support and confirm the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A431:

Epidermoid carcinoma cell line

AO:

Acridine orange

Cal-27:

OSCC cell line

DEMEM/Ham’s F-12:

Dulbecco’s modified Eagle’s medium/nutrient medium

EB:

Ethidium bromide

HaCaT:

Skin keratinocyte cell line

HNSCC:

Head and neck squamous cell carcinoma

IR:

Ionizing radiation

LED:

Light-emitting diode

LLLT:

Low-level light therapy

OSCC:

Oral squamous cell carcinoma

PBM:

Photobiomodulation

ROS:

Reactive oxygen species

RT:

Radiotherapy

SCC9:

OSCC cell line

References

  1. AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27(1):237–249

    Article  PubMed  Google Scholar 

  2. Guimaraes TA et al (2016) Metformin increases PDH and suppresses HIF-1alpha under hypoxic conditions and induces cell death in oral squamous cell carcinoma. Oncotarget 7(34):55057–55068

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bhat GR, Hyole RG, Li J (2021) Head and neck cancer: current challenges and future perspectives. Adv Cancer Res 152:67–102

    Article  CAS  PubMed  Google Scholar 

  4. Ferlay J et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  5. Sung H et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  6. Califano J et al (1996) Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 56(11):2488–2492

    CAS  PubMed  Google Scholar 

  7. Johnson DE et al (2020) Head and neck squamous cell carcinoma. Nat Rev Dis Primers 6(1):92

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  9. Patel SG, Shah JP (2005) TNM staging of cancers of the head and neck: striving for uniformity among diversity. CA Cancer J Clin 55(4):242–258 quiz 261-2, 264

    Article  PubMed  Google Scholar 

  10. Capodiferro S et al (2008) Oral laser surgical pathology: a preliminary study on the clinical advantages of diode laser and on the histopathological features of specimens evaluated by conventional and confocal laser scanning microscopy. Minerva Stomatol 57(1-2):1-6–6-7

    PubMed  Google Scholar 

  11. Schalch TD et al (2019) Photobiomodulation is associated with a decrease in cell viability and migration in oral squamous cell carcinoma. Lasers Med Sci 34(3):629–636

    Article  PubMed  Google Scholar 

  12. Limongelli L, Capodiferro S, Tempesta A, Sportelli P, Dell'Olio F, Angelelli G, Maiorano E, Favia G (2020) Early tongue carcinomas (clinical stage I and II): echo-guided three-dimensional diode laser mini-invasive surgery with evaluation of histological prognostic parameters. A study of 85 cases with prolonged follow-up. Lasers Med Sci 35(3):751–758. https://doi.org/10.1007/s10103-019-02932-z

  13. Prise KM, O'Sullivan JM (2009) Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 9(5):351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishigami T et al (2008) Inhibition of ICAM2 induces radiosensitization in oral squamous cell carcinoma cells. Br J Cancer 98(8):1357–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parvathaneni U, Laramore GE, Liao JJ (2012) Technical advances and pitfalls in head and neck radiotherapy. J Oncol 2012:597467

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gudkov AV, Komarova EA (2010) Radioprotection: smart games with death. J Clin Invest 120(7):2270–2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jorgensen TJ (2009) Enhancing radiosensitivity: targeting the DNA repair pathways. Cancer Biol Ther 8(8):665–670

    Article  CAS  PubMed  Google Scholar 

  18. Maier P, Wenz F, Herskind C (2014) Radioprotection of normal tissue cells. Strahlenther Onkol 190(8):745–752

    Article  PubMed  Google Scholar 

  19. Djavid GE, Goliaie B, Nikoofar A (2015) Analysis of radiomodulatory effect of low-level laser irradiation by clonogenic survival assay. Photomed Laser Surg 33(9):452–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chung H et al (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533

    Article  PubMed  Google Scholar 

  21. Huang YY et al (2011) Biphasic dose response in low level light therapy - an update. Dose Response 9(4):602–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim WS, Calderhead RG (2011) Is light-emitting diode phototherapy (LED-LLLT) really effective? Laser Ther 20(3):205–215

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pereira CS et al (2012) Impact of the epithelial dysplasia grading and Ki67 proliferation index in the adjacent non-malignant mucosa on recurrence and survival in head and neck squamous cell carcinoma. Pathol Res Pract 208(11):651–656

    Article  CAS  PubMed  Google Scholar 

  24. Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6(5):963–968

    Article  CAS  PubMed  Google Scholar 

  25. Bensadoun RJ, Nair RG (2012) Efficacy of low-level laser therapy (LLLT) in oral mucositis: what have we learned from randomized studies and meta-analyses? Photomed Laser Surg 30(4):191–192

    Article  PubMed  Google Scholar 

  26. Oberoi S et al (2014) Effect of prophylactic low level laser therapy on oral mucositis: a systematic review and meta-analysis. PLoS One 9(9):e107418

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gomes Henriques AC et al (2014) Low-level laser therapy promotes proliferation and invasion of oral squamous cell carcinoma cells. Lasers Med Sci 29(4):1385–1395

    PubMed  Google Scholar 

  28. Soares RG et al (2018) Treatment of mucositis with combined 660- and 808-nm-wavelength low-level laser therapy reduced mucositis grade, pain, and use of analgesics: a parallel, single-blind, two-arm controlled study. Lasers Med Sci 33(8):1813–1819

    Article  PubMed  Google Scholar 

  29. Al Okail MS (2010) Cobalt chloride, a chemical inducer of hypoxia-inducible factor-1α in U251 human glioblastoma cell line. J Saudi Chem Soc 14(2):197–201

    Article  Google Scholar 

  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. da Rocha RG et al (2019) Leptin impairs the therapeutic Effect of ionizing radiation in oral squamous cell carcinoma cells. J Oral Pathol Med 48(1):17–23

    Article  PubMed  Google Scholar 

  32. Gomes Henriques ÁC et al (2014) Low-level laser therapy promotes proliferation and invasion of oral squamous cell carcinoma cells. Lasers Med Sci 29(4):1385–1395

    PubMed  Google Scholar 

  33. Djavid GE et al (2017) Photobiomodulation leads to enhanced radiosensitivity through induction of apoptosis and autophagy in human cervical cancer cells. J Biophotonics 10(12):1732–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang L, Wu S, Xing D (2011) High fluence low-power laser irradiation induces apoptosis via inactivation of Akt/GSK3β signaling pathway. J Cell Physiol 226(3):588–601

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Zhang Y, Xing D (2010) LPLI inhibits apoptosis upstream of Bax translocation via a GSK-3beta-inactivation mechanism. J Cell Physiol 224(1):218–228

    CAS  PubMed  Google Scholar 

  36. Courtois E et al (2021) Photobiomodulation by a new optical fiber device: analysis of the in vitro impact on proliferation/migration of keratinocytes and squamous cell carcinomas cells stressed by X-rays. Lasers Med Sci 36(7):1445–1454

    Article  PubMed  Google Scholar 

  37. Ramos Silva C et al (2016) Exploring the effects of low-level laser therapy on fibroblasts and tumor cells following gamma radiation exposure. J Biophotonics 9(11-12):1157–1166

    Article  CAS  PubMed  Google Scholar 

  38. Wu S et al (2009) High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species. J Cell Physiol 218(3):603–611

    Article  CAS  PubMed  Google Scholar 

  39. Chu J, Wu S, Xing D (2010) Survivin mediates self-protection through ROS/cdc25c/CDK1 signaling pathway during tumor cell apoptosis induced by high fluence low-power laser irradiation. Cancer Lett 297(2):207–219

    Article  CAS  PubMed  Google Scholar 

  40. Sun X, Wu S, Xing D (2010) The reactive oxygen species-Src-Stat3 pathway provokes negative feedback inhibition of apoptosis induced by high-fluence low-power laser irradiation. Febs j 277(22):4789–4802

    Article  CAS  PubMed  Google Scholar 

  41. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwartz-Filho HO et al (2011) Effects of low-level laser therapy (685 nm) at different doses in osteogenic cell cultures. Lasers Med Sci 26(4):539–543

    Article  PubMed  Google Scholar 

  43. Albuquerque-Pontes GM et al (2015) Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30(1):59–66

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Dra. Lídia Maria de Andrade from Nanobiomedical Research Group - Department of Physics – ICEx/Federal University of Minas Gerais-UFMG) for the kindly donated the Cal-27 and HaCat cell lines to this study.

Funding

This study was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG), and Hospital Dilson Godinho, Montes Claros, MG Brazil. Dr. Guimarães, Dr. Dr. Santos, and Dr. de Paula are research fellows of the CNPq. Dr Farias is a research fellow of FAPEMIG.

Name of Principal Investigator: Guimaraes AL

Author information

Authors and Affiliations

Authors

Contributions

Study concepts: Angeliny Tamiarana Lima Tabosa and André Luiz Sena Guimarães

Study design: Angeliny Tamiarana Lima Tabosa, Lucyana Conceição Farias, and André Luiz Sena Guimarães

Data acquisition: Angeliny Tamiarana Lima Tabosa, Marcela Gonçalves Souza, Sabrina Ferreira de Jesus, Danielle Ferreira Rocha, Eloá Mangabeira Santos, Victor Hugo Dantas Guimarães, and Lorena dos Reis Pereira Queiroz

Quality control of data and algorithms: Sérgio Henrique Sousa Santos, Alfredo Maurício Batista de Paula, Lucyana Conceição Farias, and André Luiz Sena Guimarães

Data analysis and interpretation: Angeliny Tamiarana Lima Tabosa, Luciano Alves de Araújo Andrade, Sérgio Henrique Sousa Santos, Alfredo Maurício Batista de Paula, Lucyana Conceição Farias, and André Luiz Sena Guimarães

Statistical analysis: Angeliny Tamiarana Lima Tabosa, Paulo Eduardo Narcizo de Souza, érgio Henrique Sousa Santos, Alfredo Maurício Batista de Paula, Lucyana Conceição Farias, and André Luiz Sena Guimarães

Manuscript editing: Angeliny Tamiarana Lima Tabosa, Marcela Gonçalves Souza, Sabrina Ferreira de Jesus, Danielle Ferreira Rocha, and Lorena dos Reis Pereira Queiroz.

Manuscript review: Sérgio Henrique Sousa Santos, Alfredo Maurício Batista de Paula, Lucyana Conceição Farias, and André Luiz Sena Guimarães

Corresponding author

Correspondence to André Luiz Sena Guimarães.

Ethics declarations

Ethical approval for research

Yes. Approval was obtained from the ethics committee of Universidade Estadual de Montes Claros/CEP- Unimontes.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information 1

(SI 1). (a) Dose-response curve obtained with the AO/EB cell death assay for SCC9 cells treated with PBM at different energy densities (0, 20, 100, 200, 300, and 400 J/cm2). (b) IC50 graph calculated from cell death analysis data. (PNG 314 kb)

High Resolution Image (TIF 1401 kb)

Supplementary Information 2

(SI 2). (a) Graph and fluorescence microscopy representation of cell death analysis (AO/EB) to compare between SCC9 cells irradiated with laser and with LED at a fluence of 300 J/cm2 (control, laser, LED). (b) Graph and fluorescence microscopy representation of cell death analysis (AO/EB) to evaluate the cellular response of the groups to treatment (control, laser, laser + R 6 Gy, and R 6 Gy). (c) Graph and fluorescence microscopy representation of cell death analysis (AO/EB) to evaluate the cellular response of the groups to treatment (control, LED, LED + R 6 Gy, and R 6 Gy). (d) Graph and fluorescence microscopy representation of cell death analysis (AO/EB) to evaluate the cellular response of the groups to treatment (control, R 6 Gy, laser + R 6 Gy, and LED + R 6 Gy). Light source: 300 J/cm2. (PNG 681 kb)

High Resolution Image (TIF 2550 kb)

Supplementary Information 3

(SI 3). Picture of a cell culture plate being irradiated with the LED device (102.2 mW/cm2, 49 min, 7 cm, 300.37 J/cm2). (PNG 7504 kb)

High Resolution Image (TIF 53493 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabosa, A.T.L., Souza, M.G., de Jesus, S.F. et al. Effect of low-level light therapy before radiotherapy in oral squamous cell carcinoma: An in vitro study. Lasers Med Sci 37, 3527–3536 (2022). https://doi.org/10.1007/s10103-022-03632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-022-03632-x

Keywords

Navigation