Skip to main content
Log in

Photobiomodulation therapy upregulates the growth kinetics and multilineage differentiation potential of human dental pulp stem cells—an in vitro Study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aims to evaluate the impact of red LED irradiation on the viability, proliferation, colonogenic potential, markers expression along with osteogenic and chondrogenic differentiation of dental pulp stem cells. DPSCs were isolated from sound human permanent teeth using enzymatic digestion method and seeded with regular culture media. Cells at P4 were irradiated using red LED Light (627 nm, 2 J/cm2) and examined for growth kinetics, and multilineage differentiation using the appropriate differentiation media. The irradiated groups showed an increase in cellular growth rates, cell viability, clonogenic potential, and decrease in population doubling time compared to the control group. Cells of the irradiated groups showed enhanced differentiation towards osteogenic and chondrogenic lineages as revealed by histochemical staining using alizarin red and alcian blue stains. Photobiomodulation is an emerging promising element of tissue engineering triad besides stem cells, scaffolds, and growth factors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon request. Some data may not be made available because of privacy or ethical restrictions.

References

  1. Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Lasers Surg Med 5(1):31–39

    Article  CAS  PubMed  Google Scholar 

  2. Zheludev N (2007) The life and times of the LED—a 100-year history. Nat Photonics 1(4):189–192

    Article  CAS  Google Scholar 

  3. Souza APC, Neto AAPAV, Marchionni AMT, de Araújo Ramos M, dos Reis Jr JA, Pereira MC, Cangussú MC, de Almeida Reis SR, Pinheiro AL (2011) Effect of LED phototherapy (l70020nm) on TGF-b expression during wound healing: an immunohistochemical study in a rodent model. Photomed Laser Surg 29:605–6011

    Article  Google Scholar 

  4. Brochetti RA, Leal MP, Rodrigues R, Da Palma RK, de Oliveira LVF, Horliana ACRT, Damazo AS, de Oliveira APL, Vieira RP, Lino-dos-Santos-Franco A (2017) Photobiomodulation therapy improves both inflammatory and fibrotic parameters in experimental model of lung fibrosis in mice. Lasers Med Sci 32(8):1825–1834

    Article  PubMed  Google Scholar 

  5. Heiskanen V, Hamblin MR (2018) Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci 17(8):1003–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karu TI (2013) Cellular and molecular mechanisms of photobiomodulation (low-power laser therapy). IEEE J Sel Top Quantum Electron 20(2):143–148

    Article  Google Scholar 

  7. Volpato LER, de Oliveira RC, Machado MAAM, Espinosa MM, Bagnato VS (2011) Viability of fibroblasts cultured under nutritional stress irradiated with red laser, infrared laser, and red light-emitting diode. J Biomed Opt 16(7):75004

    Article  Google Scholar 

  8. Na S, TruongVo T, Jiang F, Joll JE, Guo Y, Utreja A, Chen J (2018) Dose analysis of photobiomodulation therapy on osteoblast, osteoclast, and osteocyte. J Biomed Opt 23(7):75008

    Article  Google Scholar 

  9. Li K, Liang Z, Zhang J, Zuo X, Sun J, Zheng Q, Song J, Ding T, Hu X, Wang Z (2020) Attenuation of the inflammatory response and polarization of macrophages by photobiomodulation. Lasers Med Sci 35(7):1509–1518

    Article  PubMed  Google Scholar 

  10. Marques MM, Diniz IMA, de Cara SPHM, Pedroni ACF, Abe GL, D’Almeida-Couto RS, Lima PLV, Tedesco TK, Moreira MS (2016) Photobiomodulation of dental derived mesenchymal stem cells: a systematic review. Photomed Laser Surg 34(11):500–508

    Article  PubMed  Google Scholar 

  11. Aydin S, Sahin F (2019) Stem cells derived from dental tissues. In: Turksen K (Ed) Cell biology and translational medicine, Volume 5: Stem Cells: Translational Science to Therapy. Springer International Publishing, New York, pp123–132. https://doi.org/10.1007/5584_2018_333

  12. Honda MJ, Imaizumi M, Tsuchiya S, Morsczeck C (2010) Dental follicle stem cells and tissue engineering. J Oral Sci 52(4):541–552

    Article  PubMed  Google Scholar 

  13. Sharpe PT (2016) Dental mesenchymal stem cells. Development 143(13):2273–2280

    Article  CAS  PubMed  Google Scholar 

  14. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci 100(10):5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  16. Zhan FL, Liu XY, Wang XB (2018) The role of microRNA-143-5p in the Differentiation of dental pulp stem cells into odontoblasts by targeting runx2 via the OPG/RANKL signaling pathway. J Cell Biochem 119(1):536–546. https://doi.org/10.1002/jcb.26212

    Article  CAS  PubMed  Google Scholar 

  17. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 97(25):13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Awais S, Balouch SS, Riaz N, Choudhery MS (2020) Human dental pulp stem cells exhibit osteogenic differentiation potential. Open Life Sciences 15(1):229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jang JY, Park SH, Park JH, Lee BK, Yun J, Lee B, Kim JH, Min BH, Kim MS (2016) In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivo-forming hydrogel. Macromol Biosci 16(8):1158–1169

    Article  CAS  PubMed  Google Scholar 

  20. Longoni A, Utomo L, Van Hooijdonk I, Bittermann G, Vetter VC, Spanjer ECK, Ross J, Rosenberg A, Gawlitta D (2020) The chondrogenic differentiation potential of dental pulp stem cells. Eur Cells Mater 39:121–135

    Article  CAS  Google Scholar 

  21. Santanna J, Fernandez TL, Bueno DF, Pinheiro CC, Hernandez AJ (2020) Cartilage regeneration with human dental pulp stem cells-a systematic review. Cytotherapy 22(5):S175–S178

    Article  Google Scholar 

  22. Huang Y-Y, Chen AC-H, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7(4)

  23. Mehrabani D, Mahdiyar P, Torabi K, Robati R, Zare S, Dianatpour M, Tamadon A (2017) Growth kinetics and characterization of human dental pulp stem cells: comparison between third molar and first premolar teeth. J Clin Exp Dent 9(2):e172

    PubMed  PubMed Central  Google Scholar 

  24. Franceschini V, Bettini S, Pifferi S, Menini A, Siciliano G, Ognio E, Brini AT, Di Oto E, Revoltella RP (2014) Transplanted human adipose tissue-derived stem cells engraft and induce regeneration in mice olfactory neuroepithelium in response to dichlobenil subministration. Chem Senses 39(7):617–629

    Article  CAS  PubMed  Google Scholar 

  25. Otto A, Oliver H, Jane M (1946) A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J Biol Chem 164(3):321–329

    Google Scholar 

  26. Kulkarni S, Meer M, George R (2020) The effect of photobiomodulation on human dental pulp–derived stem cells: systematic review. Lasers Med Sci 35(9):1889–1897

    Article  PubMed  Google Scholar 

  27. Kim HK, Kim JH, Abbas AA, Kim D-O, Park S-J, Chung JY, Song EK, Yoon TR (2009) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24(2):214–222

    Article  PubMed  Google Scholar 

  28. Holder MJ, Milward MR, Palin WM, Hadis MA, Cooper PR (2012) Effects of red light-emitting diode irradiation on dental pulp cells. J Dent Res 91(10):961–966

    Article  CAS  PubMed  Google Scholar 

  29. Li W-T, Leu Y-C, Wu J-L (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(S1):S-157

    Article  CAS  Google Scholar 

  30. Fekrazad R, Asefi S, Allahdadi M, Kalhori KAM (2016) Effect of photobiomodulation on mesenchymal stem cells. Photomed Laser Surg 34(11):533–542

    Article  PubMed  Google Scholar 

  31. Kim HB, Baik KY, Choung P-H, Chung JH (2017) Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells. Sci Rep 7(1):1–12

    Article  Google Scholar 

  32. Montoro LA, Turrioni APS, Basso FG, de Souza Costa CA, Hebling J (2014) Infrared LED irradiation photobiomodulation of oxidative stress in human dental pulp cells. Int Endod J 47(8):747–755

    Article  CAS  PubMed  Google Scholar 

  33. Peng F, Wu H, Zheng Y, Xu X, Yu J (2012) The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 27(3):645–653

    Article  PubMed  Google Scholar 

  34. Zaccara IM, Ginani F, Mota-Filho HG, Henriques ÁCG, Barboza CAG (2015) Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 30(9):2259–2264

    Article  PubMed  Google Scholar 

  35. Zaccara IM, Mestieri LB, Pilar EFS, Moreira MS, Grecca FS, Martins MD, Kopper PMP (2020) Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation. Lasers Med Sci 35(3):741–749

    Article  PubMed  Google Scholar 

  36. Sivakumar TT, Muruppel AM, Joseph AP, Reshmi A, Ramachandran R, Nair PD, Mohan SP (2019) Photobiomodulatory effect delivered by low-level laser on dental pulp stem cell differentiation for osteogenic lineage. Lasers Dent Sci 3(3):175–181

    Article  Google Scholar 

  37. Marques MM, de Cara SPHM, Abe GL, Pedroni ACF, Diniz IMA, Moreira MS (2017) Effects of photobiomodulation therapy in dentoalveolar-derived mesenchymal stem cells: a review of literature. Lasers Dent Sci 1(1):1–7

    Article  Google Scholar 

  38. Pagin MT, de Oliveira FA, Oliveira RC, Sant’Ana ACP, de Rezende MLR, Greghi SLA, Damante CA (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29(1):55–59

    Article  PubMed  Google Scholar 

  39. AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27(1):237–249

    Article  PubMed  Google Scholar 

  40. Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci 27(2):423–430

    Article  PubMed  Google Scholar 

  41. Kushibiki T, Tajiri T, Ninomiya Y, Awazu K (2010) Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation. J Photochem Photobiol B 98(3):211–215

    Article  CAS  PubMed  Google Scholar 

  42. Fekrazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR (2019) Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 34(1):115–126

    Article  PubMed  Google Scholar 

  43. Karic V, Chandran R, Abrahamse H (2020) Laser-induced differentiation of human adipose-derived stem cells to temporomandibular joint disc cells. Lasers Surg Med 53(4):567–577

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express the deepest appreciation to Dr./Ahmed Mohamed Rakha, MSCs Endodontics, Faculty of Dentistry, Suez Canal University, Egypt for his great support and help throughout this research work. Special thanks to Prof. Dr. Ayman Abo-El Magd, Professor of physics, National Institute of Laser Enhanced Sciences, Cairo University, Egypt for help in the characterization of the LED device used in this study and to Prof. Dr. Abdel-Ghaffar Abo-El Soud, Professor of physiology, Faculty of Sciences, Suez Canal University, Egypt through all the steps of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lama E. Dawoud.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Faculty of Dentistry, Suez Canal University (approval number: 221/2019).

Conflict of interest

The authors declare no competing interests.

Consent to participate

Informed consent was obtained from all patients.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawoud, L.E., Hegazy, E.M., Galhom, R.A. et al. Photobiomodulation therapy upregulates the growth kinetics and multilineage differentiation potential of human dental pulp stem cells—an in vitro Study. Lasers Med Sci 37, 1993–2003 (2022). https://doi.org/10.1007/s10103-021-03461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03461-4

Keywords

Navigation