Skip to main content

Advertisement

Log in

Microvascular imaging and monitoring of human oral cavity lesions in vivo by swept-source OCT-based angiography

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We report the development of optical coherence tomography- (OCT) based angiography (OCTA) to image blood flow within microcirculatory tissue beds in human oral cavity in vivo with a field of view at 10 mm × 10 mm. Three-dimensional (3D) structural and vascular images of labial mucosa tissue are obtained at a single 3D acquisition. Pathologic mucosal sites with mouth ulcers are examined using the OCT tomograms and angiograms, upon which to monitor the lesion healing process over a period of 2 weeks. Quantitative metrics of the capillary loop density within the lamina propria layer are evaluated, providing statistically significant difference between healthy and diseased conditions over time. Furthermore, tissue anatomy and vessel morphology of other susceptible sites to ulcer, such as tongue, alveolar mucosa, and labial frenulum, are also imaged to demonstrate the promise of the proposed method as a clinically useful tool for the diagnosis and monitoring of therapeutic treatment of oral tissue abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. American Cancer Society (2017) Cancer Facts & Figures 2017. American Cancer Society, Atlanta

  2. American Cancer Society (2015) Global Cancer Facts & Figures 3rd Edition. American Cancer Society, Atlanta

  3. National Cancer Institute (2011) Cancer Statistics Review 1975–2011: Introduction. https://seer.cancer.gov/archive/csr/1975_2011/results_merged/sect_01_overview.pdf

  4. Squier CA, Kremer MJ (2001) Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr 29:7–15

    Article  Google Scholar 

  5. Maher NG et al (2016) In vivo confocal microscopy for the oral cavity: current state of the field and future potential. Oral Oncol 54:28–35

    Article  CAS  PubMed  Google Scholar 

  6. Muldoon TJ et al (2012) Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope. Head Neck 34(3):305–312

    Article  PubMed  Google Scholar 

  7. Xu MH, Wang LHV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77(4):041101. https://doi.org/10.1063/1.2195024

  8. Tomlins PH, Wang RK (2005) Theory, developments and applications of optical coherence tomography. J Phys D Appl Phys 38(15):2519–2535

    Article  CAS  Google Scholar 

  9. Fercher AF et al (2003) Optical coherence tomography-principles and applications. Rep Prog Phys 66(2):239

    Article  Google Scholar 

  10. Drexler W and Fujimoto JG (2008) Optical coherence tomography: technology and applications. Springer Science & Business Media. Berlin

  11. Muanza TM et al (2005) Evaluation of radiation-induced oral mucositis by optical coherence tomography. Clin Cancer Res 11(14):5121–5127

    Article  CAS  PubMed  Google Scholar 

  12. Kawakami-Wong H et al (2007) In vivo optical coherence tomography-based scoring of oral mucositis in human subjects: a pilot study. J Biomed Opt 12(5):051702

    Article  PubMed  Google Scholar 

  13. Tsai MT et al (2008) Effective indicators for diagnosis of oral cancer using optical coherence tomography. Opt Express 16(20):15847–15862

    Article  PubMed  Google Scholar 

  14. Wilder-Smith P et al (2009) In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients. Lasers Surg Med 41(5):353–357

    Article  PubMed  PubMed Central  Google Scholar 

  15. DeCoro M, Wilder-Smith P (2010) Potential of optical coherence tomography for early diagnosis of oral malignancies. Expert Rev Anticancer Ther 10(3):321–329

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wilder-Smith P et al (2010) Optical diagnostics in the oral cavity: an overview. Oral Dis 16(8):717–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Motamedi S et al (2011) Gold nanorods for intravital vascular imaging of preneoplastic oral mucosa. Biomed Opt Express 2(5):1194–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gladkova N et al (2013) Evaluation of oral mucosa collagen condition with cross-polarization optical coherence tomography. J Biophotonics 6(4):321–329

    Article  PubMed  Google Scholar 

  19. Lee CK et al (2012) Diagnosis of oral precancer with optical coherence tomography. Biomed Opt Express 3(7):1632–1646

    Article  PubMed  PubMed Central  Google Scholar 

  20. Grulkowski I et al (2013) Quantitative assessment of oral mucosa and labial minor salivary glands in patients with Sjogren’s syndrome using swept source OCT. Biomed Opt Express 5(1):259–274

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee AM et al (2015) Wide-field in vivo oral OCT imaging. Biomed Opt Express 6(7):2664–2674

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scardina GA, Messina P (2009) Morphological characteristics of microcirculation in oral lichen planus involving the lateral border of the tongue. J Oral Sci 51(2):193–197

    Article  PubMed  Google Scholar 

  23. Grassi W et al (1993) Labial capillary microscopy in systemic sclerosis. Ann Rheum Dis 52(8):564–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang SW et al (2015) Clinical characteristics of narrow-band imaging of oral erythroplakia and its correlation with pathology. BMC Cancer 15:406

    Article  PubMed  PubMed Central  Google Scholar 

  25. Scardina GA, Fuca G, Messina P (2007) Microvascular characteristics of the human interdental papilla. Anat Histol Embryol 36(4):266–268

    Article  CAS  PubMed  Google Scholar 

  26. Zhang A et al (2015) Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt 20(10):100901

    Article  PubMed  PubMed Central  Google Scholar 

  27. Davoudi B et al (2012) Noninvasive in vivo structural and vascular imaging of human oral tissues with spectral domain optical coherence tomography. Biomed Opt Express 3(5):826–839

    Article  PubMed  PubMed Central  Google Scholar 

  28. Davoudi B et al (2013) Optical coherence tomography platform for microvascular imaging and quantification: initial experience in late oral radiation toxicity patients. J Biomed Opt 18(7):76008

    Article  PubMed  Google Scholar 

  29. Tsai MT et al (2008) Delineation of an oral cancer lesion with swept-source optical coherence tomography. J Biomed Opt 13(4):044012

    Article  PubMed  Google Scholar 

  30. Choi WJ, Wang RK (2014) In vivo imaging of functional microvasculature within tissue beds of oral and nasal cavities by swept-source optical coherence tomography with a forward/side-viewing probe. Biomed Opt Express 5(8):2620–2634

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu J et al (2016) Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications. Biomed Opt Express 7(5):1905–1919

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dziedzic A, Wiench R (2015) Ulceration: More on aphthous ulceration. Br Dent J 218(12):663

    Article  CAS  PubMed  Google Scholar 

  33. Rogers RS III (1992) Common lesions of the oral mucosa. A guide to diseases of the lips, cheeks, tongue, and gingivae. Postgrad Med 91(6):141–148, 151–143

    Article  PubMed  Google Scholar 

  34. Bauman N (1989) ANSI (American National Standards Institute) laser standard: no easy answers for tough questions. OR Manager 5(1):1, 6-7

    Google Scholar 

  35. Wang RK et al (2010) Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Opt Lett 35(9):1467–1469

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guizar-Sicairos M, Thurman ST, Fienup JR (2008) Efficient subpixel image registration algorithms. Opt Lett 33(2):156–158

    Article  PubMed  Google Scholar 

  37. Yousefi S, Zhi ZW, Wang RKK (2011) Eigendecomposition-based clutter filtering technique for optical microangiography. IEEE Trans Biomed Eng 58(8):2316–2323

    Article  Google Scholar 

  38. An L, Qin J, Wang RK (2010) Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. Opt Express 18(8):8220–8228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Altmeyer P, Hoffmann K, el Gammal S, Hutchinson J (2012) Wound healing and skin physiology, Springer Science & Business Media. Berlin

  40. Scardina GA, Cacioppo A, Messina P (2009) Anatomical evaluation of oral microcirculation: capillary characteristics associated with sex or age group. Ann Anat =Anat. Anz 191(4):371–378

    Article  Google Scholar 

  41. Lova RM et al (2002) Morphologic changes in the microcirculation induced by chronic smoking habit: a videocapillaroscopic study on the human labial mucosa. Am Heart J 143(4):E2

    Article  Google Scholar 

  42. Yin X, Chao JR, Wang RK (2014) User-guided segmentation for volumetric retinal optical coherence tomography images. J Biomed Opt 19(8):086020

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hasturk H, Kantarci A, Van Dyke TE (2012) Oral inflammatory diseases and systemic inflammation: role of the macrophage. Front Immunol 3:118

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brocklehurst P et al (2012) Systemic interventions for recurrent aphthous stomatitis (mouth ulcers). Cochrane Database Syst Rev 9:CD005411

    Google Scholar 

  45. Koch LH et al (2009) Randomized comparison of virtual microscopy and traditional glass microscopy in diagnostic accuracy among dermatology and pathology residents. Hum Pathol 40(5):662–667

    Article  PubMed  Google Scholar 

  46. Neville TL et al (2008) Effects of level and source of dietary selenium on maternal and fetal body weight, visceral organ mass, cellularity estimates, and jejunal vascularity in pregnant ewe lambs. J Anim Sci 86(4):890–901

    Article  CAS  PubMed  Google Scholar 

  47. Scardina GA, Ruggieri A, Messina P (2009) Oral microcirculation observed in vivo by videocapillaroscopy: a review. J Oral Sci 51(1):1–10

    Article  PubMed  Google Scholar 

  48. Reif R, Qin J, An L, Zhi Z, Dziennis S, Wang R (2012) Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system. Int J Biomed Imaging. https://doi.org/10.1155/2012/509783

  49. Hellekant C, Kaude J (1972) Renal vein thrombosis. Radiologe 12(11):349–357

    CAS  PubMed  Google Scholar 

  50. Arvidson K, Friberg U (1980) Human taste: response and taste bud number in fungiform papillae. Science 209(4458):807–808

    Article  CAS  PubMed  Google Scholar 

  51. Naumova EA et al (2013) The oral mucosal surface and blood vessels. Head Face Med 9:8

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kakodkar S et al (2010) Reversible cardiomyopathy in an adolescent with idiopathic aortic cusp ventricular tachycardia. Pediatr Cardiol 31(1):147–150

    Article  PubMed  Google Scholar 

  53. Priyanka M et al (2013) An overview of frenal attachments. J Indian Soc Periodontol 17(1):12–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Medeiros Junior R et al (2015) Labial frenectomy with Nd:YAG laser and conventional surgery: a comparative study. Lasers Med Sci 30(2):851–856

    Article  PubMed  Google Scholar 

  55. Wieser W et al (2010) Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express 18(14):14685–14704

    Article  PubMed  Google Scholar 

  56. Arnold F, West DC (1991) Angiogenesis in wound healing. Pharmacol Ther 52(3):407–422

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by research grants from the National Heart, Lung, and Blood Institute (R01 HL093140). The content is solely the responsibility of the authors and does not necessarily represent the official views of grant giving bodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruikang K. Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The in vivo imaging study that uses home-built systems to image human subjects was reviewed and approved by the Institutional Review Board of University of Washington, and the informed written consent was obtained from all subjects before imaging. This study followed the tenets of the Declaration of Helsinki and was conducted in compliance with the Health Insurance Portability and Accountability Act.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Choi, W.J. & Wang, R.K. Microvascular imaging and monitoring of human oral cavity lesions in vivo by swept-source OCT-based angiography. Lasers Med Sci 33, 123–134 (2018). https://doi.org/10.1007/s10103-017-2350-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2350-3

Keywords

Navigation