Abstract
Innovations in optical spectroscopy have helped the technology reach a point where performance previously seen only in laboratory settings can be translated and tested in real-world applications. In the field of oncology, spectral tissue sensing (STS) by means of optical spectroscopy is considered to have major potential for improving diagnostics and optimizing treatment outcome. The concept has been investigated for more than two decades and yet spectral tissue sensing is not commonly employed in routine medical practice. It is therefore important to understand what is needed to translate technological advances and insights generated through basic scientific research in this field into clinical practice. The aim of the discussion presented here is not to provide a comprehensive review of all work published over the last decades but rather to highlight some of the challenges found in literature and encountered by our group in the quest to translate optical technologies into useful clinical tools. Furthermore, an outlook is proposed on how translational researchers could proceed to eventually have STS incorporated in the process of clinical decision-making.


Similar content being viewed by others
References
Cerussi A, Shah N, Hsiang D, Durkin A, Butler J, Tromberg BJ (2006) In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt 11(4):044005. doi:10.1117/1.2337546
Brown JQ, Wilke LG, Geradts J, Kennedy SA, Palmer GM, Ramanujam N (2009) Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo. Cancer Res 69(7):2919–2926. doi:10.1158/0008-5472.CAN-08-3370
Volynskaya Z, Haka AS, Bechtel KL, Fitzmaurice M, Shenk R, Wang N, Nazemi J, Dasari RR, Feld MS (2008) Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J Biomed Opt 13(2):024012. doi:10.1117/1.2909672
Evers DJ, Nachabe R, Vranken Peeters MJ, van der Hage JA, Oldenburg HS, Rutgers EJ, Lucassen GW, Hendriks BH, Wesseling J, Ruers TJ (2013) Diffuse reflectance spectroscopy: towards clinical application in breast cancer. Breast Cancer Res Treat 137(1):155–165. doi:10.1007/s10549-012-2350-8
Evers DJ, Nachabe R, Hompes D, van Coevorden F, Lucassen GW, Hendriks BH, van Velthuysen ML, Wesseling J, Ruers TJ (2013) Optical sensing for tumor detection in the liver. Eur J Surg Oncol 39(1):68–75. doi:10.1016/j.ejso.2012.08.005
Zonios G, Dimou A, Carrara M, Marchesini R (2010) In vivo optical properties of melanocytic skin lesions: common nevi, dysplastic nevi and malignant melanoma. Photochem Photobiol 86(1):236–240. doi:10.1111/j.1751-1097.2009.00630.x
Rajaram N, Reichenberg JS, Migden MR, Nguyen TH, Tunnell JW (2010) Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer. Lasers Surg Med 42(10):716–727. doi:10.1002/lsm.21009
A’Amar OM, Liou L, Rodriguez-Diaz E, Delas Morenas A, Bigio IJ (2013) Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment. Lasers Med Sci 28(5):1323–1329. doi:10.1007/s10103-012-1245-6
Chang VT, Bean SM, Cartwright PS, Ramanujam N (2010) Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix. J Biomed Opt 15(5):057006. doi:10.1117/1.3495730
Bard MP, Amelink A, Skurichina M, Noordhoek Hegt V, Duin RP, Sterenborg HJ, Hoogsteden HC, Aerts JG (2006) Optical spectroscopy for the classification of malignant lesions of the bronchial tree. Chest 129(4):995–1001. doi:10.1378/chest.129.4.995
Bigio IJ, Bown SG (2004) Spectroscopic sensing of cancer and cancer therapy. Cancer Biol Ther 3(3):259–267
Hanney SR, Castle-Clarke S, Grant J, Guthrie S, Henshall C, Mestre-Ferrandiz J, Pistollato M, Pollitt A, Sussex J, Wooding S (2015) How long does biomedical research take? Studying the time taken between biomedical and health research and its translation into products, policy, and practice. Health Res Policy Syst 13:1. doi:10.1186/1478-4505-13-1
Westfall JM, Mold J, Fagnan L (2007) Practice-based research—“Blue Highways” on the NIH roadmap. JAMA 297(4):403–406. doi:10.1001/jama.297.4.403
Ioannidis JPA (2006) Evolution and translation of research findings: from bench to where? PLoS Clin Trials 1(7):e36. doi:10.1371/journal.pctr.0010036
Vale NB, Delfino J, Vale LF (2005) Serendipity in medicine and anesthesiology. Rev Bras Anestesiol 55(2):224–249
Crowley WF (2003) Translation of basic research into useful treatments: how often does it occur? Am J Med 114:503–505. doi:10.1016/S0002-9343(03)00119-0
Fernandez-Moure JS (2016) Lost in translation: the gap in scientific advancements and clinical application. Front Bioeng Biotechnol 4. doi:10.3389/fbioe.2016.00043
Rousche P, Schneeweis DM, Perreault EJ, Jensen W (2008) Translational neural engineering: multiple perspectives on bringing benchtop research into the clinical domain. J Neural Eng 5(1):16–20. doi:10.1088/1741-2560/5/1/P02
Wagstaff A (2014) Five steps to putting innovation at the heart of cancer care. Cancer World 58:8
Peters NHGM, van Esser S, van den Bosch MAAJ, Storm RK, Plaisier PW, van Dalen T, Diepstraten SCE, Weits R, Westenend PJ, Stapper G, Fernandez-Gallardo MA, Borel Rinkes IHM, van Hillegersberg R, Mali WPTM, Peeters PHM (2011) Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET – randomised controlled trial. Eur J Cancer 47:879–886
Fudge N, Sadler E, Fisher HR, Maher J, Wolfe CDA, McKevitt C (2016) Optimising translational research opportunities: a systematic review and narrative synthesis of basic and clinician scientists’ perspectives of factors which enable or hinder translational research. PLoS One 11(8):e0160475. doi:10.1371/journal.pone.0160475
Meslin EM, Blasimme A, Cambon-Thomsen A (2013) Mapping the translational science policy ‘valley of death’. Clin Transl Med 2(14). doi:10.1186/2001-1326-2-14
Wagner PD, Sirvastava S (2012) New paradigms in translational science research in cancer biomarkers. Transl Res 159(4):343–353. doi:10.1016/j.trsl.2012.01.015
Ioannidis JPA (2004) Materializing research promises: opportunities, priorities and conflicts in translational medicine. J Transl Med 2(5)
Madry H, Alini M, Stoddart MJ, Evans C, Miclau T, Steiner S (2014) Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols. Eur Cell Mater 27:17–21, discussion 21
Johnston SC, Hauser SL, Desmond-Hellmann S (2011) Enhancing ties between academia and industry to improve health. Nat Med 17(4):434–436
Palmer GM, Marshek CL, Vrotsos KM, Ramanujam N (2002) Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples. Lasers Surg Med 30:191–200. doi:10.1002/lsm.10026
Spliethoff JW, Prevoo W, Meier MA, de Jong J, Evers DJ, Sterenborg HJ, Lucassen GW, Hendriks BH, Ruers TJ (2015) Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: a clinical feasibility study. Clin Cancer Res. doi:10.1158/1078-0432.ccr-15-0807
Lin W-C, Toms SA, Jansen D, Mahadevan-Jansen A (2001) Intraoperative application of optical spectroscopy in the presence of blood. IEEE J Sel Top Quantum Electron 7(6):996–1003
Fitzmaurice M (2000) Principles and pitfalls of diagnostic test development: implications for spectroscopic tissue diagnosis. J Biomed Opt 5(2):119–130. doi:10.1117/1.429978
De Veld DCG, Skurichina M, Witjes MJH, Duin RPW, Sterenborg HJCM, Roodenburg JLN (2004) Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy. J Biomed Opt 9(5):940–950. doi:10.1117/1.1782611]
Rodriguez-Diaz E, Bigio IJ, Singh SK (2011) Integrated optical tools for minimally invasive diagnosis and treatment at gastrointestinal endoscopy. Robot Comput Integr Manuf 27(2):249–256. doi:10.1016/j.rcim.2010.06.006
Rodriguez-Diaz E, Huang Q, Cerda SR, O’Brien MJ, Bigio IJ, Singh SK (2014) Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy. Gastrointest Endosc. doi:10.1016/j.gie.2014.07.012
Kuiper T, Alderlieste YA, Tytgat KM, Vlug MS, Nabuurs JA, Bastiaansen BA, Lowenberg M, Fockens P, Dekker E (2015) Automatic optical diagnosis of small colorectal lesions by laser-induced autofluorescence. Endoscopy 47(1):56–62. doi:10.1055/s-0034-1378112
Chen LH, Ho H, Lazaro R, Thng CH, Yuen J, Ng WS, Cheng C (2010) Optimum slicing of radical prostatectomy specimens for correlation between histopathology and medical images. Int J Comput Assist Radiol Surg 5(5):471–487. doi:10.1007/s11548-010-0405-z
Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12(5):323–334. doi:10.1038/nrc3261
Shah N, Cerussi AE, Jakubowski D, Hsiang D, Butler J, Tromberg BJ (2004) Spatial variations in optical and physiological properties of healthy breast tissue. J Biomed Opt 9(3):534–540. doi:10.1117/1.1695560
Gabrecht T, Lovisa B, van den Bergh H, Wagnieres G (2009) Autofluorescence bronchoscopy: quantification of inter-patient variations of fluorescence intensity. Lasers Med Sci 24(1):45–51. doi:10.1007/s10103-007-0518-y
Kennedy S, Geradts J, Bydlon T, Brown JQ, Gallagher J, Junker M, Barry W, Ramanujam N, Wilke L (2010) Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast. Breast Cancer Res 12(6):R91. doi:10.1186/bcr2770
O’Sullivan TD, Leproux A, Chen J, Bahri S, Matlock A, Roblyer D, McLaren CE, Chen W, Cerussi AE, Su M, Tromberg BJ (2013) Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy. Breast Cancer Res 15(R14)
Pogue BW, Jiang S, Dehghani H, Kogel C, Soho S, Srinivasan S, Song X, Tosteson TD, Poplack SP, Paulsen KD (2004) Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes. J Biomed Opt 9(3):541–552. doi:10.1117/1.1691028
Taroni P, Pifferi A, Quarto G, Spinelli L, Torricelli A, Abbate F, Balestreri N, Ganino S, Menna S, Cassano E, Cubeddu R (2012) Effects of tissue heterogeneity on the optical estimate of breast density. Biomed Opt Express 3(10):2411–2418. doi:10.1364/boe.3.002411
Laughney AM, Krishnaswamy V, Rizzo EJ, Schwab MC, Barth RJ, Pogue BW, Paulsen KD, Wells WA (2012) Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment. Clin Cancer Res 18(22):6315–6325. doi:10.1158/1078-0432.ccr-12-0136
Spliethoff JW, De Boer LL, Meier MA, Prevoo W, De Jong J, Bydlon TM, Sterenborg HJCM, Burgers JA, Hendriks BHW, Ruers TJM (2016) Spectral sensing for tissue diagnosis during lung biopsy procedures: the importance of an adequate internal reference and real-time feedback. Lung Cancer 98:62–68. doi:10.1016/j.lungcan.2016.05.019
Svensson T, Andersson-Engels S, Einarsdóttír M, Svanberg K (2007) In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy. J Biomed Opt 12(1):014022. doi:10.1117/1.2435175
Nyst HJ, Van Veen RLP, Tan IB, Peters R, Spaniol S, Robinson DJ, Stewart FA, Levendag PC, Sterenborg HJCM (2007) Performance of a dedicated light delivery and dosimetry device for photodynamic therapy of nasophareyngeal carcinoma: phantom and volunteer experiments. Lasers Surg Med 39:647–653. doi:10.1002/lsm.20536
Nachabe R, Hendriks BH, Schierling R, Hales J, Racadio JM, Rottenberg S, Ruers TJ, Babic D, Racadio JM (2015) Real-time in vivo characterization of primary liver tumors with diffuse optical spectroscopy during percutaneous needle interventions: feasibility study in Woodchucks. Investig Radiol 50(7):443–448. doi:10.1097/rli.0000000000000149
Zhu C, Palmer GM, Breslin TM, Harter J, Ramanujam N (2006) Diagnosis of breast cancer using diffuse reflectance spectroscopy: comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique. Lasers Surg Med 38(7):714–724. doi:10.1002/lsm.20356
Laughney AM, Krishnaswamy V, Garcia-Allende PB, Conde OM, Wells WA, Paulsen KD, Pogue BW (2010) Automated classification of breast pathology using local measures of broadband reflectance. J Biomed Opt 15(6):066019–066011–066019–066016. doi:10.1117/1.3516594
Farrell TJ, Wilson BC, Patterson MS (1992) The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements. Phys Med Biol 37(12):2281–2286
Bigio IJ, Bown SG, Briggs G, Kelley C, Lakhani S, Pickard D, Ripley PM, Rose IG, Saunders C (2000) Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. J Biomed Opt 5(2):221–228
Li T, Zhang C, Ogihara M (2004) A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15):2429–2437. doi:10.1093/bioinformatics/bth267
Hsu H-H (2006) Advanced data mining technologies in bioinformatics. Idea Group Pub
Balog J, Szaniszlo T, Schaefer KC, Denes J, Lopata A, Godorhazy L, Szalay D, Balogh L, Sasi-Szabo L, Toth M, Takats Z (2010) Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal Chem 82(17):7343–7350. doi:10.1021/ac101283x
Palmer GM, Ramanujam N (2006) Monte Carlo-based inverse model for calculating tissue optical properties. Part I: theory and validation on sythetic phantoms. Appl Opt 45(5):1062–1071. doi:10.1364/AO.45.001062
Cerussi A, Shah N, Hsiang D, Durkin A, Butler J, Tromberg B (2006) In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt 11(4):044005–044001–044005–044016. doi:10.1117/1.2337546
Zonios G, Dimou A (2009) Light scattering spectroscopy of human skin in vivo. Opt Express 17(3):1256–1267
Nachabé R, Evers DJ, Hendriks BHW, Lucassen GW, Van der Voort M, Wesseling J, Ruers TJM (2011) Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples. Biomed Opt Express 2(3):600–614
de Boer LL, Molenkamp BG, Bydlon TM, Hendriks BHW, Wesseling J, Sterenborg HJCM, Ruers TJM (2015) Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries. Breast Cancer Res Treat 152(3):509–518. doi:10.1007/s10549-015-3487-z
Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L (2003) The case for early detection. Nat Rev Cancer 3:1–10. doi:10.1038/nrc1041
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There are no conflicts of interests to declare.
Role of funding source
In this research was no involvement of funding sources.
Ethical approval/Informed consent
This research did not involve patients
Additional information
Lisanne L. de Boer and Jarich W. Spliethoff contributed equally to this work.
Rights and permissions
About this article
Cite this article
de Boer, L.L., Spliethoff, J.W., Sterenborg, H.J.C.M. et al. Review: in vivo optical spectral tissue sensing—how to go from research to routine clinical application?. Lasers Med Sci 32, 711–719 (2017). https://doi.org/10.1007/s10103-016-2119-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10103-016-2119-0