Skip to main content

Advertisement

Log in

Low-level laser therapy prevents degenerative morphological changes in an experimental model of anterior cruciate ligament transection in rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the effects of low-level laser therapy (LLLT) on the prevention of cartilage damage after the anterior cruciate ligament transection (ACLT) in knees of rats. Thirty male rats (Wistar) were distributed into three groups (n = 10 each): injured control group (CG); injured laser-treated group at 10 J/cm2 (L10), and injured laser-treated group at 50 J/cm2 (L50). Laser treatment started immediately after the surgery and it was performed for 15 sessions. An 808 nm laser, at 10 and 50 J/cm2, was used. To evaluate the effects of LLLT, the qualitative and semi-quantitative histological, morphometric, and immunohistochemistry analysis were performed. Initial signs of tissue degradation were observed in CG. Interestingly, laser-treated animals presented a better tissue organization, especially at the fluence of 10 J/cm2. Furthermore, laser phototherapy was able of modulating some of the aspects related to the degenerative process, such as the prevention of proteoglycans loss and the increase in cartilage area. However, LLLT was not able of modulating chondrocytes proliferation and the immunoexpression of markers related to inflammatory process (IL-1 and MMP-13). This study showed that 808 nm laser, at both fluences, prevented features related to the articular degenerative process in the knees of rats after ACLT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lin HD, He CQ, Luo QL, Zhang JL, Zeng DX (2012) The effect of low-level to apoptosis of chondrocytes and caspase expression, including caspase-8 e caspase-3 in rabbit surgery-induced model of knee. Rheumatol Int 32:759–766

    Article  CAS  PubMed  Google Scholar 

  2. Jin SY, Hong SJ, Yang HI, Park SD, Yoo MC, Lee HJ, Hong MS, Park HJ, Yoon SH, Kim BS, Yim SV, Park HK, Chung JH (2004) Estrogen receptor-alpha gene haplotype is associated with primary knee osteoarthritis in Korean population. Arthritis Res Ther 6:R415–R421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Gupta S, Hawker GA, Laporte A, Croxford R, Coyte PC (2005) The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology 44:1531–1537

    Article  CAS  PubMed  Google Scholar 

  4. Goldring MB (2000) Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep 2:459–465

    Article  CAS  PubMed  Google Scholar 

  5. Pereira D, Peleteiro B, Araújo J, Branco J, Santos RA, Ramos E (2011) The effect of osteoarthritis definition on prevalence and incidence estimates: a systematic review. Osteoarthr Cartil 19:1270–1285

    Article  CAS  PubMed  Google Scholar 

  6. Wei M, Duan D, Liu Y, Wang Z, Li Z (2013) Increased thymosin β4 levels in the serum and SF of knee osteoarthritis patients correlate with disease severity. Regul Pept. doi:10.1016/j.regpep.2013.06.011

    Google Scholar 

  7. Steinhilber B, Haupt G, Boeer J, Grau S, Krauss I (2011) Reproducibility of concentric isokinetic and isometric strength measurements at the hip in patients with hip osteoarthritis: a preliminary study. Isokinet Exerc Sci 19:39–46

    Google Scholar 

  8. Westby MD (2012) Rehabilitation and total joint arthroplasty. Clin Geriatr Med 28:489–508

    Article  PubMed  Google Scholar 

  9. Kushibiki T, Tajiri T, Ninomiya Y, Awazu K (2010) Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation. J Photochem Photobiol B 98:211–215

    Article  CAS  PubMed  Google Scholar 

  10. Wong BJ, Pandhoh N, Truong MT, Diaz S, Chao K, Hou S, Gardiner D (2005) Identification of chondrocyte proliferation following laser irradiation, thermal injury, and mechanical trauma. Lasers Surg Med 37:89–96

    Article  PubMed  Google Scholar 

  11. Karu TI, Kolyakov SF (2005) Exact action spectra for cellular response relevant to phototherapy. Photomed Laser Surg 23:355–361

    Article  CAS  PubMed  Google Scholar 

  12. Prindeze NJ, Moffatt LT, Shupp JW (2012) Mechanisms of action for light therapy: a review of molecular interactions. Exp Biol Med (Maywood) 237:1241–1248

    Article  CAS  Google Scholar 

  13. Castano AP, Dai TH, Yaroslavsky I, Cohen R, Apruzzese WA, Smotrich MH, Hamblin MR (2007) Low-level laser therapy for zymosan-induced arthritis in rats: importance of illumination time. Lasers Surg Med 39:543–550

    Article  PubMed Central  PubMed  Google Scholar 

  14. Cho JH, Lim SC, Kim SG, Kim YS, Kang SS, Choi SH, Cho YS, Bae CS (2004) Effect of low-level laser therapy on osteoarthropathy in rabbit. In Vivo 18:585–592

    PubMed  Google Scholar 

  15. da Rosa AS, dos Santos AF, da Silva MM, Facco GG, Perreira DM, Alves AC, Leal Junior EC, de Carvalho PT (2012) Effects of low-level laser therapy at wavelengths of 660 and 808 nm in experimental model of osteoarthritis. Photochem Photobiol 88:161–166

    Article  PubMed  Google Scholar 

  16. Delfino GB, Peviani SM, Durigan JL, Russo TL, Baptista IL, Ferretti M, Moriscot AS, Salvini TF (2013) Quadriceps muscle atrophy after anterior cruciate ligament transection involves increased mRNA levels of atrogin-1, muscle ring finger 1, and myostatin. Am J Phys Med Rehabil 92:411–419

    Article  PubMed  Google Scholar 

  17. Medalha CC, Di Gangi GC, Barbosa CB, Fernandes M, Aguiar O, Faloppa F, Leite VM, Renno AC (2012) Low-level laser therapy improves repair following complete resection of the sciatic nerve in rats. Lasers Med Sci 27(3):629–635

    Article  PubMed  Google Scholar 

  18. Renner AF, Carvalho E, Soares E, Mattiello-Rosa S (2006) The effect of a passive muscle stretching protocol on the articular cartilage. Osteoarthr Cartil 14:196–202

    Article  CAS  PubMed  Google Scholar 

  19. Pedrosa WF Jr, Okamoto R, Faria PE, Arnez MF, Xavier SP, Salata LA (2009) Immunohistochemical, tomographic and histological study on onlay bone graft remodeling. Part II: calvarial bone. Clin Oral Implants Res 20:1254–1264

    Article  PubMed  Google Scholar 

  20. Tim CR, Pinto KN, Rossi BR, Fernandes K, Matsumoto MA, Parizotto NA, Rennó AC (2013) Low-level laser therapy enhances the expression of osteogenic factors during bone repair in rats. Lasers Med Sci. [Epub ahead of print]

  21. Alfredo PP, Bjordal JM, Dreyer SH, Meneses SR, Zaguetti G, Ovanessian V, Fukuda TY, Junior WS, Lopes Martins RÁ, Casarotto RA, Marques AP (2012) Efficacy of low level laser therapy associated with exercises in knee osteoarthritis: a randomized double-blind study. Clin Rehabil 26:523–533

    Article  PubMed  Google Scholar 

  22. Alves ACA, Carvalho PTC, Parente M, Xavier M, Frigo L, Aimbire F, Leal-Junior ECP, Albertini R (2013) Low-level laser therapy in different stages of rheumatoid arthritis: a histological study. Lasers Med Sci 28:529–536

    Article  PubMed  Google Scholar 

  23. Pallotta RC, Bjordal JM, Frigo L, Leal- Junior ECP, Teixeira S, Marcos RL, Ramos L, Messias FM, Lopes-Martins RAB (2012) Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. Lasers Med Sci 27:71–78

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lane NE, Brandt K, Hawker G, Peeva E, Schreyer E, Tsuji W, Hochberg MC (2011) OARSI-FDA initiative: defining the disease state of osteoarthritis. Osteoarthr Cartil 19:478–482

    Article  CAS  PubMed  Google Scholar 

  25. Ding C, Jones G, Wluka AE, Cicuttini F (2010) What can we learn about osteoarthritis by studying a healthy person against a person with early onset of disease? Curr Opin Rheumatol 22:520–527

    Article  PubMed  Google Scholar 

  26. Lee A, Ellman MB, Yan D, Kroin JS, Cole BJ, Wijnen AJ, Im HJ (2013) A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. doi:10.1016/j.gene.2013.05.069, Epub ahead of print

    Google Scholar 

  27. Fujita I, Hirata S, Ishikawa H, Mizuno K, Itoh H (1997) Apoptosis of hypertrophic chondrocytes in rat cartilaginous growth plate. J Orthop Sci 2:328–333

    Article  Google Scholar 

  28. Kuhnt K, D’ Lima DD, Hashimoto S, Lotz M (2004) Review—cell death in cartilage. Osteoarthr Cartil 12:1–16

    Google Scholar 

  29. Caterson B, Flannery CR, Hughes CE, Little CB (2000) Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol 19:333–344

    Article  CAS  PubMed  Google Scholar 

  30. Narmoneva DA, Cheung HS, Wang JY, Howell DS, Setton LA (2002) Altered swelling behavior of femoral cartilage following joint immobilization in canine model. J Orthop Res 20:83–91

    Article  PubMed  Google Scholar 

  31. Gottlieb T, Jorgensen B, Rohde E, Müller G, Scheller EE (2006) The influence of irradiation low-level diode laser on the proteoglycan content in arthrotically cartilage in rabbits. Med Laser Appl 21:53–59

    Article  Google Scholar 

  32. Soriano F, Campana V, Moya M, Gavotto A, Simes J, Soriano M, Soriano R, Spitale L, Palma J (2006) Photobiomodulation of pain and inflammation in microcrystalline arthropathies: experimental and clinical results. Photomed Laser Surg 24:140–150

    Article  CAS  PubMed  Google Scholar 

  33. Rousseau JC, Garnero P (2012) Biological markers in osteoarthritis. Bone 51:265–277

    Article  CAS  PubMed  Google Scholar 

  34. Hasegawa A, Nakahara H, Kinoshita M, Asahara H, Koziol J, Lotz MK (2013) Cellular and extracellular matrix changes in anterior cruciate ligaments during human knee aging and osteoarthritis. Arthritis Res Ther 15(1):R29, Epub ahead of print

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Guo H, Luo Q, Zhang J, Lin H, Xia L, He C (2011) Comparing different physical factors on serum TNF-α levels, chondrocyte apoptosis, caspase-3 and caspase-8 expression in osteoarthritis of the knee in rabbits. Joint Bone Spine 78:604–610

    Article  CAS  PubMed  Google Scholar 

  36. Renno ACM, McDonnell PA, Parizotto NA, Laakso EL (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25:275–280

    Article  CAS  PubMed  Google Scholar 

  37. Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 1:8–12

    Article  Google Scholar 

  38. Kujawa J, Zavodnik L, Zavodnik I, Buko V, Lapshyna A, Bryszewska M (2004) Effect of low-intensity (3.75–25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure. J Clin Laser Med Surg 22:111–117

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Brazilian funding agencies Fapesp and CNPq for the financial support of this research.

Competing interests

No competing financial interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Bublitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bublitz, C., Medalha, C., Oliveira, P. et al. Low-level laser therapy prevents degenerative morphological changes in an experimental model of anterior cruciate ligament transection in rats. Lasers Med Sci 29, 1669–1678 (2014). https://doi.org/10.1007/s10103-014-1546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1546-z

Keywords

Navigation