Skip to main content

Advertisement

Log in

Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the feasibility of applying Raman spectroscopy in probing the molecular changes in terms of collagen deposition and tissue remodeling associated with two well-established experimental models of osteoarthritis (OA) in knee of rats. In order to evaluate alterations in the articular surface area, the menisci-covered tibial region was assessed into three groups as follows: control (joint preserved) and two models of experimental knee OA: collagenase-induced model (n = 8) and treadmill exercise-induced model (n = 8). Each group was examined for molecular changes using spectral parameters related to cartilage, subchondral bone, and bone tissues. A significant increase of Raman ratios related to mineralization and tissue remodeling was found (p < 0.05), suggesting that both models were successful for inducing OA in rats. The significantly lower phenylalanine content and higher crystallinity in the treadmill exercise-induced model of OA than collagenase-induced model of OA (p < 0.05) indicated that the OA pathogenesis was model-dependent. Thus, this work suggests that the Raman spectroscopy technique has potential for the diagnosis and detection of cartilage damage and monitoring of subchondral bone and bone in OA pathogenesis at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58:26–35. doi:10.1002/art.23176

    Article  PubMed Central  PubMed  Google Scholar 

  2. Neogi T (2012) Clinical significance of bone changes in osteoarthritis. Ther Adv Musculoskelet Dis 4:259–67. doi:10.1177/1759720X12437354

    Article  PubMed Central  PubMed  Google Scholar 

  3. Dieppe PA, Lohmander LS (2005) Pathogenesis and management of pain in osteoarthritis. Lancet 365:965–973. doi:10.1016/S0140-6736(05)71086-2

    Article  CAS  PubMed  Google Scholar 

  4. Mobasheri A (2012) Osteoarthritis year 2012 in review: biomarkers. Osteoarthritis Cartilage Jul 25. [Epub ahead of print]. doi: 10.1016/j.joca.2012.07.009

  5. Bedson J, Croft PR (2008) The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord 2(9):116. doi:10.1186/1471-2474-9-116

    Article  Google Scholar 

  6. Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, le Duong T (2006) Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38:234–43. doi:10.1016/j.bone.2005.08.007

    Article  PubMed  Google Scholar 

  7. Swift A (2012) Osteoarthritis 1: Physiology, risk factors, and causes of pain. Nurs Times 108:12–5

    CAS  PubMed  Google Scholar 

  8. Tu Q, Chang C (2012) Diagnostic applications of Raman spectroscopy. Nanomedicine 8:545–58. doi:10.1016/j.nano.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  9. Peres MB, Silveira L Jr, Zângaro RA, Pacheco MT, Pasqualucci CA (2011) Classification model based on Raman spectra of selected morphological and biochemical tissue constituents for identification of atherosclerosis in human coronary arteries. Lasers Med Sci 26:645–55. doi:10.1007/s10103-011-0908-z

    Article  PubMed  Google Scholar 

  10. de Souza RA, Xavier M, da Silva FF, de Souza MT, Tosato MG, Martin AA, Castilho JC, Ribeiro W, Silveira L Jr (2012) Influence of creatine supplementation on bone quality in the ovariectomized rat model: an FT-Raman spectroscopy study. Lasers Med Sci 27:487–95. doi:10.1007/s10103-011-0976-0

    Article  PubMed  Google Scholar 

  11. Ellis R, Green E, Winlove CP (2009) Structural analysis of glycosaminoglycans and proteoglycans by means of Raman microspectrometry. Connect Tissue Res 50:29–36. doi:10.1080/03008200802398422

    Article  PubMed  Google Scholar 

  12. Dehring KA, Smukler AR, Roessler BJ, Morris MD (2006) Correlating changes in collagen secondary structure with aging and defective type II collagen by Raman spectroscopy. Appl Spectrosc 60:366–72. doi:10.1366/000370206776593582

    Article  CAS  PubMed  Google Scholar 

  13. Bonifacio A, Sergo V (2010) Effects of sample orientation in Raman micro spectroscopy of collagen fibers and their impact on the interpretation of the amide III band. Vib Spectrosc 53:314–317

    Article  CAS  Google Scholar 

  14. Esmonde-White KA, Esmonde-White FW, Morris MD, Roessler BJ (2011) Fiber-optic Raman spectroscopy of joint tissues. Analyst 136:1675–85. doi:10.1039/c0an00824a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Esmonde-White KA, Mandair GS, Raaii F, Jacobson JA, Miller BS, Urquhart AG, Roessler BJ, Morris MD (2009) Raman spectroscopy of synovial fluid as a tool for diagnosing osteoarthritis. J Biomed Opt 14:034013. doi:10.1117/1.3130338

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lim NS, Hamed Z, Yeow CH, Chan C, Huang Z (2011) Early detection of biomolecular changes in disrupted porcine cartilage using polarized Raman spectroscopy. J Biomed Opt 16:017003. doi:10.1117/1.3528006

    Article  PubMed  Google Scholar 

  17. Lee C, Wen C, Yc C, Sy H, Cc T, Wf C, Sp H, Cs H, Jean Y (2009) Intra-articular magnesium sulfate (MgSO4) reduces experimental osteoarthritis and nociception: association with attenuation of N-methyl-D-aspartate (NMDA) receptor subunit 1 phosphorylation and apoptosis in rat chondrocytes. Osteoarthritis Cartilage 17:1485–1493. doi:10.1016/j.joca.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  18. Tang T, Muneta T, Ju Y, Nimura A, Miyazaki K, Masuda H, Mochizuki T, Sekiya I (2008) Serum keratan sulfate transiently increases in the early stage of osteoarthritis during strenuous running of rats: protective effect of intraarticular hyaluronan injection. Arthrit Res Ther 10:1–8. doi:10.1186/ar2363

    Article  Google Scholar 

  19. Sekiya I, Tang T, Hayashi M, Morito T, Ju I, Mochizuki T, Muneta T (2009) Periodic knee injections of BMP-7 delay cartilage degeneration induced by excessive running in rats. J Orthop Res 27(8):1088–1092

    Article  CAS  PubMed  Google Scholar 

  20. British Pharmacopeia Online (2012) Volume V. Appendix II H. Raman Spectrometry. http://bp2012.infostar.com.cn/Bp2012.aspx?a=display&id=1006. Accessed 16 Feb 2013

  21. Steiner R (2011) Laser-tissue interactions. In: Karsai S, Raulin C (eds) Laser and IPL Technology in Dermatology and Aesthetic Medicine. Springer, Berlin Heidelberg, Netherlands, pp 23–36

    Chapter  Google Scholar 

  22. McCreadie BR, Morris MD, Sudhaker CTC, Rao D, Finney WF, Widjaja E, Goldstein SA (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39:1190–1195. doi:10.1016/j.bone.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  23. Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat Res 469:2160–9. doi:10.1007/s11999-010-1692-y

    Article  PubMed Central  PubMed  Google Scholar 

  24. Yavorskyy A, Hernandez-Santana A, McCarthy G, McMahon G (2008) Detection of calcium phosphate crystals in the joint fluid of patients with osteoarthritis—analytical approaches and challenges. Analyst 133:302–18. doi:10.1039/b716791a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Fuerst M, Lammers L, Schäfer F, Niggemeyer O, Steinhagen J, Lohmann CH, Rüther W (2009) Investigation of calcium crystals in OA knees. Rheumatol Int 30:623–31. doi:10.1007/s00296-009-1032-2

    Article  PubMed  Google Scholar 

  26. Huber M, Trattnig S, Lintner F (2000) Anatomy, biochemistry, and physiology of articular cartilage. Investig Radiol 35:573–580

    Article  CAS  Google Scholar 

  27. Boskey A, Pleshko Camacho N (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478. doi:10.1016/j.biomaterials.2006.11.043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lajeunesse D (2011) Subchondral bone involvement in the pathophysiology of osteoarthritis. In: Understanding Osteoarthritis from Bench to Bedside, ISBN: 978-81-308-0459-0 Editors: Johanne Martel-Pelletier and Jean-Pierre Pelletier. Research Signpost 37/661 (2), Fort P.O. Trivandrum-695 023 Kerala, India, pp 69–83

  29. Day JS, Van Der Linden JC, Bank RA, Ding M, Hvid I, Sumner DR, Weinans H (2004) Adaptation of subchondral bone in osteoarthritis. Biorheology 41:359–68

    CAS  PubMed  Google Scholar 

  30. da Silva FF, de Souza RA, Pacheco MT, Ribeiro W, da Silva MA, Miranda H, Salgado MA, de Melo Castilho JC, Silveira L Jr (2011) Effects of different swimming exercise intensities on bone tissue composition in mice: a Raman spectroscopy study. Photomed Laser Surg 29:217–25. doi:10.1089/pho.2010.2784

    Article  PubMed  Google Scholar 

  31. Inzana JA, Maher JR, Takahata M, Schwarz EM, Berger AJ, Awad HA (2013) Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis. J Biomech 46(4):723–30. doi:10.1016/j.jbiomech.2012.11.039, Epub 2012 Dec 20

    Article  PubMed Central  PubMed  Google Scholar 

  32. Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T (2000) A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fasciculares). Bone 27:541–550. doi:10.1016/S8756-3282(00)00362-8

    Article  CAS  PubMed  Google Scholar 

  33. Southern Association of Forensic Scientists (2013) http://forendex.southernforensic.org/uploads/spectra/ketamine_HCl-raman.pdf. Accessed 22 July 2013

  34. Lambert J, Storrie-Lombardi M, Borchert M (2013) Measurement of physiologic glucose levels using raman spectroscopy in a rabbit aqueous humor model. http://photonicssociety.org/newsletters/apr98/aqueoushumor.htm. Accessed 25 July 2013

Download references

Acknowledgments

R.A. Souza thanks FAPEMIG (Fundação de Amparo a Pesquisa do Estado de Minas Gerais) for the research grant support (APQ-02900-10). M. Xavier thanks FAPEMIG for the research grant support (APQ-01733-11). L. Silveira Jr. thanks FAPESP (São Paulo Research Foundation) and CNPq (National Counsel of Technological and Scientific Development) for the partial financial support (2009/01788-5 and 483026/2010-7, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Aparecido de Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, R.A., Xavier, M., Mangueira, N.M. et al. Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats. Lasers Med Sci 29, 797–804 (2014). https://doi.org/10.1007/s10103-013-1423-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1423-1

Keywords

Navigation