Skip to main content

Advertisement

Log in

The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the microscopic changes and surface roughness on hydroxyapatite (HA)-coated implants following exposure to different powers and durations of Er:YAG laser irradiation in order to determine the proper pulse energy level and irradiation time. Ten HA-coated implants and ten fluoride-modified TiO2 implants were used. The implants were divided into a control (one implant) and test group (nine implants) for each implant type. Implants in the test groups were sub-divided into three groups (three implants per group) based on the applied laser pulse energy and irradiation time. The measurement of surface roughness was performed on all implants in the test groups using a white light interferometer before and after laser irradiation. R a values were recorded and compared in order to evaluate changes in surface roughness. For HA-coated implants, the R a values increased in all test groups after laser irradiation. However, mean R a values in the fluoride-modified TiO2-blasted implant test group were decreased after irradiation. There was no statistical difference. Scanning electron microscope analysis revealed surface alterations in both the HA-coated and fluoridated TiO2-blasted implants irradiated for 1.5 min at 100 mJ/pulse, 10 Hz. When the pulse energy and irradiation time increased, greater surface alterations, including surface flattening and microfractures, were observed. In conclusion, the results of the current study suggest that no changes could be observed in both HA-coated implants and fluoride-modified TiO2-blasted implants after irradiation at an intensity of 100 mJ/pulse, 10 Hz for 1 min performed to achieve surface detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albrektsson T, Dahl E, Enbom L, Engevall S, Engquist B, Eriksson AR, Feldmann G, Freiberg N, Glantz PO, Kjellman O et al (1988) Osseointegrated oral implants. A Swedish multicenter study of 8139 consecutively inserted Nobelpharma implants. J Periodontol 59:287–296

    Article  PubMed  CAS  Google Scholar 

  2. Albrektsson T, Isidor F (1994) Consensus report of session IV. In: Lang NP, Karring T (eds) Proceeding of the 1st European workshop on periodontology. Quintessence Books, Berlin, pp 365–369

    Google Scholar 

  3. Fransson C, Lekholm U, Jemt T, Berglundh T (2005) Prevalence of subjects with progressive loss at implants. Clin Oral Implants Res 16:440–446

    Article  PubMed  Google Scholar 

  4. Roos-Jansaker AM, Lindahl C, Renvert H, Renvert S (2006) Nine- to fourteen-year follow-up of implant treatment. Part II: presence of peri-implant lesion. J Clin Periodontol 33:296–301

    Article  PubMed  Google Scholar 

  5. Pjetursson BE, Tan K, Lang NP, Bragger U, Egger M, Zwahlen M (2004) A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implants Res 15:625–642

    Article  PubMed  Google Scholar 

  6. Mombelli A, Lang NP (1998) The diagnosis and treatment of peri-implantitis. Periodontol 2000 17:63–76

    Article  PubMed  CAS  Google Scholar 

  7. Baron M, Haas R, Dortbudak O, Watzek G (2000) Experimentally induced peri-implantitis: a review of different treatment methods described in the literature. Int J Oral Maxillofac Implants 15:533–544

    PubMed  CAS  Google Scholar 

  8. Heydenrijk K, Meijer HJ, wan der Reijden WA, Raghoebar GM, Vissink A, Stegenga B (2002) Microbiota around root-form endoosseous implants; a review of the literature. Int J Oral Maxillofac Implants 17:829–838

    PubMed  Google Scholar 

  9. Baier RE, Meyer AE (1988) Implant surface preparation. Int J Oral Maxillofac Implants 3:9–20

    PubMed  CAS  Google Scholar 

  10. Sennerby L, Lekholm U (1993) The soft tissue response to titanium abutments retrieved from humans and reimplanted in rats. A light microscopic study. Clin Oral Implants Res 4:23–27

    Article  PubMed  CAS  Google Scholar 

  11. Meffert RM, Langer B, Fritz ME (1992) Dental implants: a review. J Periodontol 63:859–870

    Article  PubMed  CAS  Google Scholar 

  12. Zablotsky MH, Diedrich DL, Meffert RM (1992) Detoxification of endotoxin-contaminated titanium & hydroxyapatite-coated surfaces utilizing various chemotherapeutic & mechanical modalities. Implant Dent 1:154–158

    Article  PubMed  CAS  Google Scholar 

  13. Krozer A, Hall J, Ericsson I (1999) Chemical treatment of machined titanium surfaces. An in vitro study. Clin Oral Implant Res 3:204–211

    Article  Google Scholar 

  14. Kreisler M, Gotz H, Duschner H (2002) Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2 and GaAAIAs laser irradiation on surface properties of endoessous dental implants. Int J Oral Maxillofac Implants 17:202–211

    PubMed  Google Scholar 

  15. Ando Y, Aoki A, Watanabe H, Ishikawa I (1996) Bactericidal effect of erbium YAG laser on periodontopathic bacteria. Laser Surg Med 19:190–200

    Article  CAS  Google Scholar 

  16. Aoki A, Miura M, Akiyama F, Nakagawa N, Tanaka J, Oda S, Watanabe H, Ishikawa I (2000) In vitro evaluation of Er:YAG laser scaling of subgingival calculus in comparison with ultrasonic scaling. J Periodontal Res 35:266–277

    Article  PubMed  CAS  Google Scholar 

  17. Schwarz F, Putz N, Georg T, Reich E (2001) Effect of an Er:YAG laser on periodontally involved root surfaces: an in vivo and in vitro SEM comparison. Laser Surg Med 29:328–335

    Article  CAS  Google Scholar 

  18. Schwarz F, Sculean A, Berakdar M, Szathmari L, Georg T, Becker J (2003) In vivo and in vitro effects of an Er:YAG laser, a GaAlAs diode laser, and scaling and root planning of periodontally diseased root surfaces: a comparative histologic study. Lasers Surg Med 32:359–366

    Article  PubMed  Google Scholar 

  19. Mizutani K, Aoki A, Takasaki AA, Kinoshita A, Hayashi C, Oda S, Ishikawa I (2006) Periodontal tissue healing following flap surgery using an Er:YAG laser in dogs. Laser Surg Med 38:314–324

    Article  Google Scholar 

  20. Aoki A, Sasaki KM, Watanabe H, Ishikawa I (2004) Lasers in nonsurgical periodontal therapy. Periodontol 2000 36:59–97

    Article  PubMed  Google Scholar 

  21. Ishikawa I, Aoki A, Takasaki AA (2004) Potential applications of Erbium:YAG laser in periodontics. J Periodontol Res 39:275–285

    Article  Google Scholar 

  22. Shin SI, Min HK, Park BH, Kwon YH, Park JB, Herr Y, Heo SJ, Chung JH (2011) The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces: an in vitro study. Lasers Med Sci 26:767–776

    Article  PubMed  Google Scholar 

  23. Albrektsson T, Wennerberg A (2004) Oral implant surfaces: part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 17:536–543

    PubMed  Google Scholar 

  24. Tucker D, Cobb CM, Rapley JW, Killoy WJ (1996) Morphologic changes following in vitro CO2 laser treatment of calculus-ladened root surfaces. Laser Surg Med 18:150–156

    Article  CAS  Google Scholar 

  25. Moritz A, Schoop U, Goharkhay K, Schauer P, Doertbudak O, Wernisch J, Sperr W (1998) Treatment of periodontal pockets with a diode laser. Laser Surg Med 22:302–311

    Article  CAS  Google Scholar 

  26. Bach G, Necket C, Mall C, Krekeler G (2000) Conventional versus laser-assisted therapy of peri-implantitis: a five-year comparative study. Implant Dent 9:247–251

    Article  PubMed  CAS  Google Scholar 

  27. Folwaczny M, Mehl A, Aggstaller H, Hickel R (2002) Antimicrobial effects of 2.94 micron Er:YAG laser radiation on root surfaces: an in vitro study. J Clin Periodontol 29:73–78

    Article  PubMed  Google Scholar 

  28. Friedmann A, Antic L, Bernimoulin JP, Purucker P (2006) In vitro attachment of osteoblasts on contaminated rough titanium surfaces treated by Er:YAG laser. J Biomed Mater Res A 79:53–60

    PubMed  Google Scholar 

  29. Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J (2003) Effects of an Er:YAG laser and the Vector® ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res 14:784–792

    Article  PubMed  Google Scholar 

  30. Kreisler M, Kohnen W, Marinello C, Götz H, Duschner H, Jansen B, d’Hoedt B (2002) Bactericidal effect of the Er:YAG laser on dental implant surfaces: an in vitro study. J Periodontol 73:1292–1298

    Article  PubMed  Google Scholar 

  31. Kreisler M, Kohnen W, Christoffers AB, Götz H, Jansen B, d’Hoedt B et al (2005) In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er:YAG laser and an air powder system. Clin Oral Implants Res 16:36–43

    Article  PubMed  Google Scholar 

  32. Kreisler M, Al Haj H, d’Hoedt B (2002) Temperature changes at the implant-bone interface during simulated surface decontamination with an Er:YAG laser. Int J Prosthodont 15:582–587

    PubMed  Google Scholar 

  33. Eriksson AR, Albrektsson T (1983) Temperature threshold levels for heat-induced bone tissue injury. A vital-microscoping study in the rabbit. J Prosthet Dent 50:101–107

    Article  PubMed  CAS  Google Scholar 

  34. Lim YJ, Oshida Y, Andres CJ, Barco MT (2001) Surface characterizations of variously treated titanium materials. Int J Oral Maxillofac Implants 16:333–342

    PubMed  CAS  Google Scholar 

  35. De Leonardis D, Garg AK, Pecora GE (1999) Osseointegration of rough acid-etched titanium implants: 5-year follow-up of 100 minimatic implants. Int J Oral Maxillofac Implants 14:384–391

    PubMed  Google Scholar 

  36. Wennerberg A, Ektessabi A, Albrektsson T, Johansson C, Andersson B (1997) A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Int J Oral Maxillofac Implants 12:486–494

    PubMed  CAS  Google Scholar 

  37. London RM, Roberts FA, Baker DA, Rohrer MD, O’Neal RB (2002) Histologic comparison of a thermal dual-etched implant surface to machined, TPS, and HA surfaces: bone contact in vivo in rabbits. Int J Oral Maxillofac Implants 17:369–376

    PubMed  Google Scholar 

  38. Grossner-Schreiber B, Teichmann J, Hannig M, Dorfer C, Wenderoth DF, Ott SJ (2009) Modified implant surfaces show different biofilm compositions under in vivo conditions. Clin Oral Implants Res 20:817–826

    Article  PubMed  Google Scholar 

  39. Renvert S, Roos-Jansaker AM, Claffey N (2008) Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol 35:305–315

    Article  PubMed  Google Scholar 

  40. Wennerberg A, Albrektsson T (2000) Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants 15:331–344

    PubMed  CAS  Google Scholar 

  41. Dong SP, Mainsah E, Sullivan PJ, Stout KJ (1994) Instruments and measurement techniques of 3-dimensional surface topography. In: Stout KJ (ed) Three dimensional surface topography: measurement, interpretation and applications. Penton Press, London, pp 3–63

    Google Scholar 

Download references

Disclosure of proprietary interests

We certify that we have no affiliation with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in this manuscript. We declare that we have no conflicts of interest, and the research described here was supported by our department’s own research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hyuk Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, SI., Lee, EK., Kim, JH. et al. The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis. Lasers Med Sci 28, 823–831 (2013). https://doi.org/10.1007/s10103-012-1162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1162-8

Keywords

Navigation