Skip to main content

Advertisement

Log in

Stability of dental implants after irradiation with an 830-nm low-level laser: a double-blind randomized clinical study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Little is known about the benefits of low-level laser therapy (LLLT) on improvement of stability of dental implants. The aim of this randomized clinical study was to assess the LLLT effect on implants stability by means of resonance frequency analysis (RFA). Thirty implants were distributed bilaterally in the posterior mandible of eight patients. At the experimental side, the implants were submitted to LLLT (830 nm, 86 mW, 92.1 J/cm2, 0.25 J, 3 s/point, at 20 points), and on the control side, the irradiation was simulated (placebo). The first irradiation was performed in the immediate postoperative period, and it was repeated every 48 h in the first 14 days. The initial implant stability quotient (ISQ) of the implants was measured by means of RFA. New ISQ measurements were made after 10 days, 3, 6, 9, and 12 weeks. The initial ISQ values ranged from 65–84, with a mean of 76, undergoing a significant drop in stability from the 10th day to the 6th week in the irradiated group, and presenting a gradual increase from the 6th to the 12th week. The highest ISQ values were observed on the 10th day in the irradiated group, and the lowest in the 6th week in both groups. Under the conditions of this study, no evidence was found of any effect of LLLT on the stability of the implants when measured by RFA. Since high primary stability and good bone quality are of major relevancy for a rigid bone–implant interface, additional LLLT may have little impact macroscopically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thomas KA, Cook SD (1985) An evaluation of variables influencing implant fixation by direct bone apposition. J Biomed Mater Res 19(8):875–901

    Article  PubMed  CAS  Google Scholar 

  2. Mustafa K, Wroblewski J, Hultenby K, Lopez BS, Arvidson K (2000) Effects of titanium surfaces blasted with TiO2 particles on the initial attachment of cells derived from human mandibular bone. A scanning electron microscopic and histomorphometric analysis. Clin Oral Implants Res 11(2):116–128

    PubMed  CAS  Google Scholar 

  3. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25(7):889–902

    Article  PubMed  CAS  Google Scholar 

  4. Kazem Shakouri S, Soleimanpour J, Salekzamani Y, Oskuie MR (2010) Effect of low-level laser therapy on the fracture healing process. Lasers Med Sci 25(1):73–77

    Article  PubMed  Google Scholar 

  5. Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23(5):492–496

    Article  PubMed  CAS  Google Scholar 

  6. Pourzarandian A, Watanabe H, Ruwanpura SM, Aoki A, Ishikawa I (2005) Effect of low-level Er:YAG laser irradiation on cultured human gingival fibroblasts. J Periodontol 76(2):187–193

    Article  PubMed  Google Scholar 

  7. Eduardo FP, Mehnert DU, Monezi TA, Zezell DM, Schubert MM, Eduardo CP, Marques MM (2007) Cultured epithelial cells response to phototherapy with low-intensity laser. Lasers Surg Med 39(4):365–372

    Article  PubMed  Google Scholar 

  8. Morimoto Y, Arai T, Kikuchi M, Nakajima S, Nakamura H (1994) Effect of low-intensity argon laser irradiation on mitochondrial respiration. Lasers Surg Med 15(2):191–199

    Article  PubMed  CAS  Google Scholar 

  9. Karu T (1989) Photobiology of low-power laser effects. Health Phys 56(5):691–704

    Article  PubMed  CAS  Google Scholar 

  10. da Silva RV, Camilli JA (2006) Repair of bone defects treated with autogenous bone graft and low-power laser. J Craniofac Surg 17(2):297–301

    Article  PubMed  Google Scholar 

  11. Fujihara NA, Hiraki KR, Marques MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38(4):332–336

    Article  PubMed  Google Scholar 

  12. Kim YD, Kim SS, Hwang DS, Kim SG, Kwon YH, Shin SH, Kim UK, Kim JR, Chung IK (2007) Effect of low-level laser treatment after installation of dental titanium implant-immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats. Lasers Surg Med 39(5):441–450

    Article  PubMed  Google Scholar 

  13. Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23(2):161–166

    Article  PubMed  CAS  Google Scholar 

  14. Guzzardella GA, Torricelli P, Nicoli-Aldini N, Giardino R (2003) Osseointegration of endosseous ceramic implants after postoperative low-power laser stimulation: an in vivo comparative study. Clin Oral Implants Res 14(2):226–232

    Article  PubMed  Google Scholar 

  15. Khadra M, Ronold HJ, Lyngstadaas SP, Ellingsen JE, Haanaes HR (2004) Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Implants Res 15(3):325–332. doi:10.1111/j.1600-0501.2004.00994.x

    Article  PubMed  Google Scholar 

  16. Lopes CB, Pinheiro AL, Sathaiah S, Duarte J, Cristinamartins M (2005) Infrared laser light reduces loading time of dental implants: a Raman spectroscopic study. Photomed Laser Surg 23(1):27–31. doi:10.1089/pho.2005.23.27

    Article  PubMed  CAS  Google Scholar 

  17. Lopes CB, Pinheiro AL, Sathaiah S, Da Silva NS, Salgado MA (2007) Infrared laser photobiomodulation (lambda 830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25(2):96–101

    Article  PubMed  CAS  Google Scholar 

  18. Meredith N, Shagaldi F, Alleyne D, Sennerby L, Cawley P (1997) The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clin Oral Implants Res 8(3):234–243

    Article  PubMed  CAS  Google Scholar 

  19. Wennerberg A, Albrektsson T, Andersson B, Krol JJ (1995) A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res 6(1):24–30

    Article  PubMed  CAS  Google Scholar 

  20. Albrektsson T, Johansson C, Lundgren A, Sul Y, Gottlow J (2000) Experimental studies on oxidized implant. A histomorphometrical and biomechanical analysis. Applied Osseoint Res 1:21–24

    Google Scholar 

  21. Aparicio C, Lang NP, Rangert B (2006) Validity and clinical significance of biomechanical testing of implant/bone interface. Clin Oral Implants Res 17(Suppl 2):2–7

    Article  PubMed  Google Scholar 

  22. Meredith N (1998) Assessment of implant stability as a prognostic determinant. Int J Prosthodont 11(5):491–501

    PubMed  CAS  Google Scholar 

  23. Lachmann S, Laval JY, Jager B, Axmann D, Gomez-Roman G, Groten M, Weber H (2006) Resonance frequency analysis and damping capacity assessment. Part 2: peri-implant bone loss follow-up. An in vitro study with the Periotest and Osstell instruments. Clin Oral Implants Res 17(1):80–84

    Article  PubMed  Google Scholar 

  24. Lachmann S, Jager B, Axmann D, Gomez-Roman G, Groten M, Weber H (2006) Resonance frequency analysis and damping capacity assessment. Part I: an in vitro study on measurement reliability and a method of comparison in the determination of primary dental implant stability. Clin Oral Implants Res 17(1):75–79

    Article  PubMed  Google Scholar 

  25. Karl M, Graef F, Heckmann S, Krafft T (2008) Parameters of resonance frequency measurement values: a retrospective study of 385 ITI dental implants. Clin Oral Implants Res 19(2):214–218

    Article  PubMed  Google Scholar 

  26. Balleri P, Cozzolino A, Ghelli L, Momicchioli G, Varriale A (2002) Stability measurements of osseointegrated implants using Osstell in partially edentulous jaws after 1 year of loading: a pilot study. Clin Implant Dent Relat Res 4(3):128–132

    Article  PubMed  Google Scholar 

  27. da Cunha HA, Francischone CE, Filho HN, de Oliveira RC (2004) A comparison between cutting torque and resonance frequency in the assessment of primary stability and final torque capacity of standard and TiUnite single-tooth implants under immediate loading. Int J Oral Maxillofac Implants 19(4):578–585

    PubMed  Google Scholar 

  28. Nedir R, Bischof M, Szmukler-Moncler S, Bernard JP, Samson J (2004) Predicting osseointegration by means of implant primary stability. Clin Oral Implants Res 15(5):520–528

    Article  PubMed  Google Scholar 

  29. Degidi M, Daprile G, Piattelli A, Carinci F (2007) Evaluation of factors influencing resonance frequency analysis values, at insertion surgery, of implants placed in sinus-augmented and nongrafted sites. Clin Implant Dent Relat Res 9(3):144–149

    Article  PubMed  Google Scholar 

  30. Bischof M, Nedir R, Szmukler-Moncler S, Bernard JP, Samson J (2004) Implant stability measurement of delayed and immediately loaded implants during healing. Clin Oral Implants Res 15(5):529–539

    Article  PubMed  Google Scholar 

  31. Argüello C, Alvarado-Gil JJ, Delgadillo I, Chirtoc M, Vargas H (1995) A new optical method based on laser ‘knife edge’ detection for monitoring an early embryonic beating heart. Meas Sci Technol 6:1433–1435

    Article  Google Scholar 

  32. Bachmann L, Zezell DM, Maldonado EP (2003) Determination of beam width and quality for pulsed lasers using the knife-edge method. Instrum Sci Technol 31:47–52

    Article  Google Scholar 

  33. Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41(4):291–297

    Article  PubMed  Google Scholar 

  34. Pinheiro AL, Gerbi ME (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24(2):169–178. doi:10.1089/pho.2006.24.169

    Article  PubMed  CAS  Google Scholar 

  35. Pinheiro AL, Limeira Junior Fde A, Gerbi ME, Ramalho LM, Marzola C, Ponzi EA, Soares AO, De Carvalho LC, Lima HC, Goncalves TO (2003) Effect of 830-nm laser light on the repair of bone defects grafted with inorganic bovine bone and decalcified cortical osseus membrane. J Clin Laser Med Surg 21(5):301–306

    Article  PubMed  Google Scholar 

  36. Blaya DS, Guimaraes MB, Pozza DH, Weber JB, de Oliveira MG (2008) Histologic study of the effect of laser therapy on bone repair. J Contemp Dent Pract 9(6):41–48

    PubMed  Google Scholar 

  37. Rodrigo SM, Cunha A, Pozza DH, Blaya DS, Moraes JF, Weber JB, de Oliveira MG (2009) Analysis of the systemic effect of red and infrared laser therapy on wound repair. Photomed Laser Surg 27(6):929–935

    Google Scholar 

  38. Gerbi ME, Marques AM, Ramalho LM, Ponzi EA, Carvalho CM, Santos Rde C, Oliveira PC, Noia M, Pinheiro AL (2008) Infrared laser light further improves bone healing when associated with bone morphogenic proteins: an in vivo study in a rodent model. Photomed Laser Surg 26(1):55–60

    Article  PubMed  Google Scholar 

  39. Pinheiro AL, Martinez Gerbi ME, Carneiro Ponzi EA, Pedreira Ramalho LM, Marques AM, Carvalho CM, Santos Rde C, Oliveira PC, Noia M (2008) Infrared laser light further improves bone healing when associated with bone morphogenetic proteins and guided bone regeneration: an in vivo study in a rodent model. Photomed Laser Surg 26(2):167–174

    Article  PubMed  CAS  Google Scholar 

  40. Liu X, Lyon R, Meier HT, Thometz J, Haworth ST (2007) Effect of lower-level laser therapy on rabbit tibial fracture. Photomed Laser Surg 25(6):487–494

    Article  PubMed  Google Scholar 

  41. Khadra M (2005) The effect of low-level laser irradiation on implant-tissue interaction. In vivo and in vitro studies. Swed Dent J Suppl 172:1–63

    PubMed  Google Scholar 

  42. Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26(17):3503–3509

    Article  PubMed  CAS  Google Scholar 

  43. Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(6):693–700

    Article  PubMed  Google Scholar 

  44. Renno AC, McDonnell PA, Parizotto NA, Laakso EL (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25(4):275–280

    Article  PubMed  CAS  Google Scholar 

  45. Pretel H, Lizarelli RF, Ramalho LT (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39(10):788–796

    Article  PubMed  Google Scholar 

  46. Welch AJ, Torres JH, Cheong WF (1989) Laser physics and laser-tissue interaction. Tex Heart Inst J 16(3):141–149

    PubMed  CAS  Google Scholar 

  47. Barewal RM, Oates TW, Meredith N, Cochran DL (2003) Resonance frequency measurement of implant stability in vivo on implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants 18(5):641–651

    PubMed  Google Scholar 

  48. Sennerby L (2000) Meredith N (2008) Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol 47:51–66. doi:10.1111/j.1600-0757.2008.00267.x

    Article  Google Scholar 

  49. Sennerby L, Persson LG, Berglundh T, Wennerberg A, Lindhe J (2005) Implant stability during initiation and resolution of experimental periimplantitis: an experimental study in the dog. Clin Implant Dent Relat Res 7(3):136–140

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dentsply and DMC for their valuable support in this study, and also the research grants: CEPID/FAPESP #05/51689-2, PROCAD/CAPES #0349/05-4, PROAP/CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joelle Marie García-Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Morales, J.M., Tortamano-Neto, P., Todescan, F.F. et al. Stability of dental implants after irradiation with an 830-nm low-level laser: a double-blind randomized clinical study. Lasers Med Sci 27, 703–711 (2012). https://doi.org/10.1007/s10103-011-0948-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0948-4

Keywords

Navigation