Skip to main content
Log in

Zinc phthalocyanine-loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor-bearing mice

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Nanoparticles formulated from the biodegradable copolymer poly(lactic-coglycolic acid) (PLGA) were investigated as a drug delivery system to enhance tissue uptake, permeation, and targeting of zinc(II) phthalocyanine (ZnPc) for photodynamic therapy. Three ZnPc nanoparticle formulations were prepared using a solvent emulsion evaporation method and the influence of sonication time on nanoparticle shape, encapsulation and size distribution, in vitro release, and in vivo photodynamic efficiency in tumor-bearing mice were studied. Sonication time did not affect the process yield or encapsulation efficiency, but did affect significantly the particle size. Sonication for 20 min reduced the mean particle size to 374.3 nm and the in vitro release studies demonstrated a controlled release profile of ZnPc. Tumor-bearing mice injected with ZnPc nanoparticles exhibited significantly smaller mean tumor volume, increased tumor growth delay and longer survival compared with the control group and the group injected with free ZnPc during the time course of the experiment. Histopathological examination of tumor from animals treated with PLGA ZnPc showed regression of tumor cells, in contrast to those obtained from animals treated with free ZnPc. The results indicate that ZnPc encapsulated in PLGA nanoparticles is a successful delivery system for improving photodynamic activity in the target tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moan J, Berg K (1992) Photo chemotherapy of cancer: experimental research. Photochem Photobiol 55:931–948

    Article  CAS  PubMed  Google Scholar 

  2. Dougherty TJ, Gomer CJ, Henderson BW et al (1998) Photodynamic therapy. J Natl Cancer Inst 90(12):889–905

    Article  CAS  PubMed  Google Scholar 

  3. Soncin M, Polo L, Reddi E et al (1995) Effect of the delivery system on the biodistribution of Ge(IV) octabutoxy-phthalocyanines in tumour-bearing mice. Cancer Lett 89:101–106

    CAS  PubMed  Google Scholar 

  4. Derycke ASL, De Witte VAM (2004) Liposomes for photodynamic therapy. Adv Drug Deliv Rev 56:17–30

    Article  CAS  PubMed  Google Scholar 

  5. Sibata MN, Tedesco AC, Marchetti JM (2004) Photophysical and photochemical studies of zinc(II) phthalocyanine in long time circulation micelles for photodynamic therapy use. Eur J Pharm Sci 23:131–138

    Article  CAS  PubMed  Google Scholar 

  6. Soncin M, Polo L, Reddi E et al (1995) Unusually high affinity of Zn(II) tetradibenzobarrelenooctabutoxy-phthalocyanine for low density lipoproteins in a tumor-bearing mouse. Photochem Photobiol 61(3):310–312

    Article  CAS  PubMed  Google Scholar 

  7. Allémann E, Brasseur N, Benrezzak O et al (1995) PEG-coated poly(lactic acid) nanoparticles for the delivery of hexadecafluoro zinc phthalocyanine to EMT-6 mouse mammary tumours. J Pharm Pharmacol 47(5):382–387

    PubMed  Google Scholar 

  8. Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6(4):319–327

    Article  CAS  Google Scholar 

  9. Kawashima Y (2001) Nanoparticulate systems for improved drug delivery. Adv Drug Deliv Rev 47(1):1–2

    Article  CAS  PubMed  Google Scholar 

  10. Konan YN, Berton M, Gurney R, Allemann E (2003) Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl) porphyrin by incorporation into sub-200 nm nanoparticles. Eur J Pharm Sci 18(3–4):241–249

    Article  CAS  PubMed  Google Scholar 

  11. Ricci-Júnior E, Marchetti JM (2006) Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use. Int J Pharm 310:187–195

    Article  PubMed  Google Scholar 

  12. Pinõn-Segundo E, Garnem-Quintanar A, Alonso-Perez V, Quintanar-Guerrerro D (2005) Preparation and characterization of triclosan nanoparticles for periodontal treatment. Int J Pharm 294:217–232

    Article  PubMed  Google Scholar 

  13. Naraharisetti PK, Lew MD, Fu Y, Lee DJ, Wang CH (2005) Gentamicin-loaded discs and microspheres and their modifications: characterization and in vitro release. J Control Release 102(2):345–359

    Article  CAS  PubMed  Google Scholar 

  14. Wischke C, Schwendeman SP (2008) Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 364:298–327

    Article  CAS  PubMed  Google Scholar 

  15. Song CX, Labhasetwar V, Murphy H et al (1997) Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release 43:197–212

    Article  Google Scholar 

  16. Cheng YH, Illum L, Davis SS (1998) A poly(D,L-lactide-co-glycolide) microsphere depot system for delivery of haloperidol. J Control Release 55:203–212

    Article  CAS  PubMed  Google Scholar 

  17. Gómez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E (2007) Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm 331:153–159

    Article  PubMed  Google Scholar 

  18. Sahoo SK, Panyam J, Prabha S, Labhasetwar V (2002) Residual polyvinyl alcohol associated with poly(D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82(4):105–114

    Article  CAS  PubMed  Google Scholar 

  19. Kompella UB, Bandi N, Ayalasomeyajula SP (2001) Poly(lactic acid) nanoparticles for sustained release of budesonide. Drug Deliv Technol 1:28–34

    CAS  Google Scholar 

  20. Song X, Zhao Y, Wu W et al (2008) PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm 350:320–329

    Article  CAS  PubMed  Google Scholar 

  21. Mainardes RM, Evangelista RC (2005) PLGA nanoparticles containing prazequantal: effect of formulation variables on size distribution. Int J Pharm 290:137–144

    Article  CAS  PubMed  Google Scholar 

  22. Budhian A, Siegal SJ, Winey KI (2007) Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm 336:367–375

    Article  CAS  PubMed  Google Scholar 

  23. Scholes PD, Coombes AGA, Illum L et al (1993) The preparation of sub-200 nm poly-(lactide-co-glycolide) microspheres for site specific drug delivery. J Control Release 25:145–153

    Article  CAS  Google Scholar 

  24. Jeong YI, Na HS, Seo DH et al (2008) Ciprofloxacin-encapsulated poly(D,L-lactic-co-glycolic) nanoparticles and its antibacterial activity. Int J Pharm 352:317–323

    Article  CAS  PubMed  Google Scholar 

  25. Klosa D, Siepmann F, Elkharraz K, Siepmann J (2008) PLGA-based drug delivery systems: importance of the type of drug and device geometry. Int J Pharm 354:95–103

    Article  Google Scholar 

  26. Yeo Y, Park K (2004) Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharmacol Res 27:1–12

    Article  CAS  Google Scholar 

  27. Hasan AS, Socha M, Lamprecht A et al (2007) Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int J Pharm 344:53–61

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Deng X, Huang Z (2001) In vitro protein release and degradation of poly-dl-lactide-poly(ethylene glycol) microspheres with entrapped human serum albumin: quantitative evaluation of the factors involved in protein release phases. Pharm Res 18:117–124

    Article  PubMed  Google Scholar 

  29. Soppimath KS, Aminabhaui TM, Kullkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as delivery devices. J Control Release 70:1–20

    Article  CAS  PubMed  Google Scholar 

  30. Giteau A, Venie-julienne MC, Aubert-Pouëssel A, Benoit JP (2008) How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm 350:14–26

    Article  CAS  PubMed  Google Scholar 

  31. Zolnik BS, Leary PE, Burgess DJ (2006) Elevated temperature accelerated release testing of PLGA microspheres. J Control Release 12:293–300

    Article  Google Scholar 

  32. Pegaz B, Debefve E, Ballini JP, Konan-Kouakou YN, van den Bergh H (2006) Effect of nanoparticles size on the extravasation and the photothrombic activity of meso(p-tetracarboxyphenyl)porphyrin. J Photochem Photobiol B 85(3):216–222

    Article  CAS  PubMed  Google Scholar 

  33. Vargas A, Eid M, Fanchaouy M, Gurny R, Delie F (2008) In vivo photodynamic activity of photosensitizer-loaded nanoparticles: formulation properties, administration parameters and biological issues involved in PDT outcome. Eur J Pharm Biopharm 69:43–53

    Article  CAS  PubMed  Google Scholar 

  34. Milla LN, Yslas EI, Cabral A et al (2008) Pharmacokinetics, toxicological and phototherapeutic studies of phthalocyanine ZnPcCF3. J Biomed Pharmacother 63:209–215

    Article  Google Scholar 

  35. Salah M, Samy N, Fadel M (2009) Methylene blue mediated photodynamic therapy for resistant plaque psoriasis. J Drug Dermatol 8:42–49

    Google Scholar 

  36. Calista D (2009) Photodynamic therapy for the treatment of a giant superficial basal cell carcinoma. Photodermatol Photoimmunol Photomed 25:53–54

    Article  PubMed  Google Scholar 

  37. Berking C, Hegyi J, Arenberger P, Ruzicka T, Jemec GB (2009) Photodynamic therapy of necrobiosis lipoidica – a multicenter study of 18 patients. Dermatology 218:136–139

    Article  CAS  PubMed  Google Scholar 

  38. Pariser D, Loss R, Jarratt M et al (2008) Topical methyl-aminolevulinate photodynamic therapy using red light-emitting diode light for treatment of multiple actinic keratoses: a randomized, double-blind, placebo-controlled study. J Am Acad Dermatol 59:569–576

    Article  PubMed  Google Scholar 

  39. Peloi LS, Soares RR, Biondo CE, Souza VR, Hioka N, Kimura E (2008) Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. J Biosci 33:231–237

    Article  CAS  PubMed  Google Scholar 

  40. Karmakova T, Feofanov A, Pankratov A et al (2006) Tissue distribution and in vivo photosensitizing activity of 13,15-[N-(3-hydroxypropyl)]cycloimide chlorin p6 and 13,15-(N-methoxy)cycloimide chlorin p6 methyl ester. J Photochem Photobiol B 82:28–36

    Article  CAS  PubMed  Google Scholar 

  41. Dragicevic-Curic N, Gräfe S, Albrecht V, Fahr A (2008) Topical application of temoporfin-loaded invasomes for photodynamic therapy of subcutaneously implanted tumors in mice: a pilot study. J Photochem Photobiol B 91:41–50

    Article  CAS  PubMed  Google Scholar 

  42. Ismail MS, Dressler C, Koeppe P et al (1997) Pharmacokinetic analysis of octa-alpha-butyloxy-zinc phthalocyanine in mice bearing Lewis lung carcinoma. J Clin Laser Med Surg 15(4):157–61

    CAS  PubMed  Google Scholar 

  43. Pegaz B, Debefve E, Borle F, Ballini JP, van den Bergh H, Kouakou-Konan YN (2005) Encapsulation of porphyrins and chlorins in biodegradable nanoparticles: the effect of dye lipophilicity on the extravasation and the photothrombic activity. A comparative study. J Photochem Photobiol B 80(1):19–27

    Article  CAS  PubMed  Google Scholar 

  44. Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha Fadel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadel, M., Kassab, K. & Abdel Fadeel, D. Zinc phthalocyanine-loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor-bearing mice. Lasers Med Sci 25, 283–292 (2010). https://doi.org/10.1007/s10103-009-0740-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-009-0740-x

Keywords

Navigation