Skip to main content

Advertisement

Log in

Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Mastodynia is correlated with the menstrual cycle. Using frequency-domain near-infrared spectroscopy (FD-NIRS), we investigated changes in breast perfusion in women who were or were not using hormonal contraception. Healthy volunteers, on or not on hormonal contraception, were examined. Optical properties were measured in all quadrants of both breasts, and physiological parameters were calculated. Measurements were repeated every other day during one complete menstrual cycle. Measurements were comparable in all quadrants. Data remained unchanged during the entire cycle in patients using hormonal contraception. However, a biphasic variation of deoxyhemoglobin, oxyhemoglobin, total hemoglobin (tHb), and water content (H2O) was observed in women not using contraception. tHb and H2O distinctly increased during the ovulation period and remained elevated throughout the luteal phase. It was concluded that FD-NIRS allows accurate measurement of optical properties of human breasts. As opposed to the menstrual cycles of persons using oral contraception, spontaneous menstrual cycles exhibit biphasic variations of tissue perfusion parameters. These findings are important for the investigation of mastodynia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Halaska M, Beles P, Gorkow C, Sieder C (1999) Treatment of cyclical mastalgia with a solution containing a Vitex agnus castus extract: results of a placebo-controlled double-blind study. Breast 8:175–181

    Article  CAS  PubMed  Google Scholar 

  2. Patterson M, Pogue B, Wilson B (1993) Part 4. In: Müller BCG, Alfano R, Arridge S, Beuthan J, Gratton E, Kaschke M, Masters B, Svanberg S, van der Zee P, Potter RF (eds) Medical optical tomography: functional imaging and monitoring. SPIE Optical Engineering Press, Washington, p 513

  3. Chance B (1998) Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann N Y Acad Sci 838:29–45

    Article  CAS  PubMed  Google Scholar 

  4. Chance B, Cope M, Gratton E (1998) Phase measurement of light absorption and scatter in human tissue. Rev Sci Instrum 69:3457–3481

    Article  CAS  Google Scholar 

  5. Fishkin J, Coquoz O, Anderson E, Brenner M, Trombergc B (1997) Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject. Appl Opt 36:10–20

    Article  CAS  PubMed  Google Scholar 

  6. Cope M (1991) The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant. PhD thesis

  7. Tromberg BJ, Coquoz O, Fishkin JB, Pham T, Anderson ER, Butler J, Cahn M, Gross JD, Venugopalan V, Pham D (1997) Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration. Philos Trans R Soc Lond B Biol Sci 352:661–668

    Article  CAS  PubMed  Google Scholar 

  8. Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2:26–40

    Article  CAS  PubMed  Google Scholar 

  9. Holboke MJ, Tromberg BJ, Li X, Shah N, Fishkin J, Kidney D, Butler J, Chance B, Yodh AG (2000) Three-dimensional diffuse optical mammography with ultrasound localization in a human subject. J Biomed Opt 5:237–247

    Article  CAS  PubMed  Google Scholar 

  10. Manoharan R, Shafer K, Perelman L, Wu J, Chen K, Deinum G, Fitzmaurice M, Myles J, Crowe J, Dasari RR, Feld MS (1998) Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging. Photochem Photobiol 67:15–22

    Article  CAS  PubMed  Google Scholar 

  11. Chernomordik V, Hattery DW, Grosenick D, Wabnitz H, Rinneberg H, Moesta KT, Schlag PM, Gandjbakhche A (2002) Quantification of optical properties of a breast tumor using random walk theory. J Biomed Opt 7:80–87

    Article  PubMed  Google Scholar 

  12. Cubeddu R, D’Andrea C, Pifferi A, Taroni P, Torricelli A, Valentini G (2000) Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast. Photochem Photobiol 72:383–391

    Article  CAS  PubMed  Google Scholar 

  13. Shah N, Cerussi A, Eker C, Espinoza J, Butler J, Fishkin J, Hornung R, Tromberg B (2001) Noninvasive functional optical spectroscopy of human breast tissue. Proc Natl Acad Sci U S A 98:4420–4425

    Article  CAS  PubMed  Google Scholar 

  14. Bevilacqua F, Berger A, Cerussi A, Jakubowski D, Tormberg B (2000) Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods. Appl Opt 39:6498–6507

    Article  CAS  PubMed  Google Scholar 

  15. Ader DN, Browne MW (1997) Prevalence and impact of cyclic mastalgia in a United States clinic-based sample. Am J Obstet Gynecol 177:126–132

    Article  CAS  PubMed  Google Scholar 

  16. Holland PA, Gateley CA (1994) Drug therapy of mastalgia. What are the options? Drugs 48:709–716

    Article  CAS  PubMed  Google Scholar 

  17. Plu-Bureau G, Le MG, Sitruk-Ware R, Thalabard JC (2006) Cyclical mastalgia and breast cancer risk: results of a French cohort study. Cancer Epidemiol Biomarkers Prev 15:1229–1231

    Article  PubMed  Google Scholar 

  18. Simpson HW, Cornelissen G, Katinas G, Halberg F (2000) Meta-analysis of sequential luteal-cycle-associated changes in human breast tissue. Breast Cancer Res Treat 63:171–173

    Article  CAS  PubMed  Google Scholar 

  19. Ramakrishnan R, Khan SA, Badve S (2002) Morphological changes in breast tissue with menstrual cycle. Mod Pathol 15:1348–1356

    Article  PubMed  Google Scholar 

  20. Masters JR, Drife JO, Scarisbrick JJ (1977) Cyclic Variation of DNA synthesis in human breast epithelium. J Natl Cancer Inst 58:1263–1265

    CAS  PubMed  Google Scholar 

  21. Milligan D, Drife JO, Short RV (1975) Changes in breast volume during normal menstrual cycle and after oral contraceptives. BMJ 4:494–496

    Article  CAS  PubMed  Google Scholar 

  22. Gateley CA, Maddox PR, Mansel RE, Hughes LE (1990) Mastalgia refractory to drug treatment. Br J Surg 77:1110–1112

    Article  CAS  PubMed  Google Scholar 

  23. Gateley CA, Mansel RE (1990) Management of cyclical breast pain (comments). Br J Hosp Med 43:330–332

    CAS  PubMed  Google Scholar 

  24. Gateley CA, Mansel RE (1991) Management of the painful and nodular breast. Br Med Bull 47:284–294

    CAS  PubMed  Google Scholar 

  25. Gateley CA, Miers M, Mansel RE, Hughes LE (1992) Drug treatments for mastalgia: 17 years experience in the Cardiff Mastalgia Clinic. J R Soc Med 85:12–15

    CAS  PubMed  Google Scholar 

  26. Gateley CA, Bundred NJ, West RR, Mansel RE (1992) Reproductive factors associated with mastalgia. Cancer Detect Prev 16:39–41

    CAS  PubMed  Google Scholar 

  27. Hamed H, Caleffi M, Chaudary MA, Fentiman IS (1990) LHRH analogue for treatment of recurrent and refractory mastalgia. Ann R Coll Surg Engl 72:221–224

    CAS  PubMed  Google Scholar 

  28. Jenkins PL, Jamil N, Gateley C, Mansel RE (1993) Psychiatric illness in patients with severe treatment-resistant mastalgia. Gen Hosp Psychiatry 15:55–57

    Article  CAS  PubMed  Google Scholar 

  29. Blommers J, de Lange-De Klerk ES, Kuik DJ, Bezemer PD, Meijer S (2002) Evening primrose oil and fish oil for severe chronic astalgia: a randomized, double-blind, controlled trial. Am J Obstet Gynecol 187:1389–1394

    Article  CAS  PubMed  Google Scholar 

  30. Quaresima V, Matcher SJ, Ferrari M (1998) Identification and quantification of intrinsic optical contrast for near-infrared mammography. Photochem Photobiol 67:4–14

    Article  CAS  PubMed  Google Scholar 

  31. Cerussi AE, Jakubowski D, Shah N, Bevilacqua F, Lanning R, Berger AJ, Hsiang D, Butler J, Holcombe RF, Tromberg BJ (2002) Spectroscopy enhances the information content of optical mammography. J Biomed Opt 7:60–71

    Article  CAS  PubMed  Google Scholar 

  32. Shah N, Cerussi AE, Jakubowski D, Hsiang D, Butler J, Tromberg BJ (2004) Spatial variations in optical and physiological properties of healthy breast tissue. J Biomed Opt 9:534–540

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hornung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stahel, M.C., Wolf, M., Baños, A. et al. Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles. Lasers Med Sci 24, 901–907 (2009). https://doi.org/10.1007/s10103-009-0662-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-009-0662-7

Keywords

Navigation