Skip to main content

Advertisement

Log in

Biogas production from energy crops in northern Greece: economics of electricity generation associated with heat recovery in a greenhouse

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Herein a techno-economic assessment was performed on an energy-crop-based biogas plant coupled with a greenhouse for utilizing thermal energy produced by cogeneration. Seven energy crops were evaluated: triticale, maize, alfalfa, sunflower, clover, barley and wheat. According to the evaluation, triticale was the most competitive energy crop under selected climate conditions for northern Greece. Although maize displays higher biomass yield and biogas potential than the drought-resistant crop triticale, it has high irrigation demand that contributes significantly to total production costs. For a triticale-based biogas production to become economically feasible, agricultural arable area larger than 500 ha, or biogas plant size larger than 1000 kWel, is required. However, with public funding, biogas production becomes feasible at smaller area (>250 ha) or biogas plant size (>500 kWel). The inclusion of a greenhouse into the design of the biogas plant contributes positively to the economic viability of the entire system. Under this scenario, greenhouse financial income accounts for about 17–18% of total income. Results of a sensitivity analysis suggest that the selection of an appropriate energy crop for biogas production should be based principally on both digestibility (specific methane yield) and biomass yield per hectare, these factors being more critical than biomass production costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C :

Constant accounting for material properties of the pump

\(C_{{{\text{CH}}_{4} }}\) :

Specific methane yield (m3 CH4/t VS)

C DM :

Dry matter content of silage (%FM/100)

C G :

Specific investment costs (€/m2)

C R :

Carriage capacity of the tractor (m3)

C VS :

Volatile solids content of dry mass (%DM/100)

D :

Inner diameter of the tube (mm)

D d :

Day duration (h)

d IT :

Depth of tillage (cm)

D n :

Night duration (h)

D S :

Depth of implement in the soil (cm)

d T :

Total distance travelled by the tractors (km)

H E :

Operational manometric pressure of equipment (m)

H L :

Pressure losses in the pipes (m)

H T :

Total manometric water pressure (m)

H W :

Depth of the water body from which water is pumped (m)

k AV :

Availability rate of biomass within the operational radius, here: 0.3

k FA :

Unplanted, fallow land coefficient

k LO :

Factor accounting for losses in harvesting and silaging

k P :

Specific power requirements of each implement (kW/(mIW × (km/h))

k PL :

Partial load operation factor (%)

k PM :

Coefficient for safety margin in tractor engine sizing

k T :

Factor to include tractor turns on the fields

k UN :

Un-arable land area coefficient

M BD :

Dry mass of crops to be packed (t DM)

M BF :

Fresh mass of crop biomass transported (t)

M TT :

Transportation capacity of the tractors (t)

N :

Month of the year in the cultivation period (September–July)

N H :

Hourly diesel fuel consumptions for each field work (L/h)

NPV:

Net present value (€)

n R :

Number of reactors in the biogas plant

n TT :

Number of tractors required for biomass transportation

n TF :

Number of tractors required for field works

N T :

Total fuel consumption of tractors (L)

P :

Value of yearly cash flow at the year showing first positive value of cumulative cash flow

PBP:

Payback period (year)

P D :

Drawbar power (kW)

P E :

Engine power per tractor (kW)

P EC :

Cumulated engine power of all tractors (kW)

P EE :

Electrical power of the engine (kW)

P P :

Pump power required to drive water sprinklers (kW)

P TO :

Power-take-off (kW)

P TT :

Engine power of transport tractors (kW)

Q :

Water flow for irrigation (m3/h)

R A :

Ratio of direct availability of nutrients in digestates (%)

R E :

Ratio of fertilizing efficiency (%)

r e :

Pump efficiency coefficient

R FERT :

Recycling rate of nutrients related to the spreading of digestate onto the fields (%)

R L :

Nutrient losses during storage of the digestates

R S :

Soil resistance (N/(m × cmDS))

r SIL :

Packing rate (h/t DM)

r U :

Engine power usage factor

S C :

Operational cultivation area, after subtraction of un-arable land and fallow land (ha)

S G :

Greenhouse surface (ha)

S L :

Total cultivation area, including un-arable land and fallow land (ha)

T A :

Duration available to perform ploughing operations (h)

T d :

Target day temperature in the month (°C)

T D :

Total distance covered by tractors for biomass transportation (km)

T HD :

Day heating degrees (°C)

T HN :

Night heating degrees (°C)

T iav :

Average day temperature in the month (°C)

T imax :

Maximum day temperature in the month (°C)

T n :

Target night temperature in the month (°C)

t SIL :

Operation time of packing tractors for silaging (h)

t W :

Time required to perform each individual field operation (h)

V :

Total volume of biomass to be transported (m3)

v :

Value of cumulative cash flow at year showing last negative value of cumulative cash flow (€)

v T :

Tractor velocity (km/h)

v TT :

Average speed of the transport tractors (km/h)

W I :

Size of implements used for tillage and other field operations (m)

W IT :

Size of the ploughing implement attached to the tractor (m)

Y BF :

Fresh biomass yield before ensiling (t/ha)

\(Y_{{{\text{CH}}_{4} }}\) :

Methane yields per hectare (m3 CH4/ha)

Y E :

Electrical efficiency of CHP unit (%)

Y N :

Years after initial investment showing the last negative value of cumulative cash flow (year)

Y SD :

Yield of dry ensiled biomass (t DM/ha)

Y TH :

Thermal efficiency (%)

ΔT SUN :

Indoor/outdoor temperature difference due to greenhouse effect (°C)

τ :

Tortuosity factor

References

  • Konrad C et al (2011) Bioenergy for regions—alternative cropping systems and optimisation of local heat supply, energy and sustainability. III. In: Villacampa Y, Brebbia CA, Mammoli AA (eds) 3rd international conference on energy and sustainability, Alicante, Spain, 11–13, Apr 2011. WIT Press, Southampton

  • Amigun B, von Blottnitz H (2010) Capacity-cost and location-cost analyses for biogas plants in Africa resources. Conserv Recycl 55:63–73. doi:10.1016/j.resconrec.2010.07.004

    Article  Google Scholar 

  • Balussou D, Kleyböcker A, McKenna R, Möst D, Fichtner W (2012) An economic analysis of three operational co-digestion biogas plants in Germany. Waste Biomass Valoriz 3:23–41

    Article  CAS  Google Scholar 

  • Balussou D, Heffels T, McKenna R, Möst D, Fichtner W (2014) An evaluation of optimal biogas plant configurations in Germany. Waste Biomass Valoriz 5:743–758

    Article  CAS  Google Scholar 

  • Barbanti L, Di Girolamo G, Grigatti M, Bertin L, Ciavatta C (2014) Anaerobic digestion of annual and multi-annual biomass crops. Ind Crops Prod 56:137–144. doi:10.1016/j.indcrop.2014.03.002

    Article  CAS  Google Scholar 

  • Braun R, Weiland P, Wellinger A (2008) Biogas from energy crop digestion. In: IEA bioenergy task, pp 1–20

  • Brulé M (2014) The effect of enzyme additives on the anaerobic digestion of energy crops. Ph.D. thesis. VDI-MEG 538. State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim. http://opus.uni-hohenheim.de/volltexte/2014/1030/

  • Brulé M, Bolduan R, Seidelt S, Schlagermann P, Bott A (2013) Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops. Environ Technol 34:1–12

    Article  Google Scholar 

  • Buckmaster D (2009) Equipment matching for silage harvest. Appl Eng Agric 25:31–36

    Article  Google Scholar 

  • D’Amours L, Savoie P (2005) Density profile of corn silage in bunker silos. Can Biosyst Eng 47:21–28

    Google Scholar 

  • Davies B (2004) Assessing the economics of silage production. In: Kaiser AG, Piltz JW, Burns HM, Griffiths NW (eds) Successful silage. NSW Department of Primary Industries, Orange,, pp. 277–310. http://www.dpi.nsw.gov.au. Retrieved 20 Oct 2015

  • de Castro Villela IA, Silveira JL (2005) Thermoeconomic analysis applied in cold water production system using biogas combustion. Appl Therm Eng 25:1141–1152. doi:10.1016/j.applthermaleng.2004.08.014

    Article  Google Scholar 

  • Dion L-M, Lefsrud M, Orsat V (2011) Review of CO2 recovery methods from the exhaust gas of biomass heating systems for safe enrichment in greenhouses. Biomass Bioenergy 35:3422–3432. doi:10.1016/j.biombioe.2011.06.013

    Article  CAS  Google Scholar 

  • Esen M, Yuksel T (2013) Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy Build 65:340–351. doi:10.1016/j.enbuild.2013.06.018

    Article  Google Scholar 

  • EurObserve’ER (2014) Biogas barometer. Biogas electricity production growth in 2013. www.eurobserv-er.org/. Retrieved 10 Apr 2015

  • Faaij APC (2006) Bio-energy in Europe: changing technology choices. Energy Policy 34:322–342. doi:10.1016/j.enpol.2004.03.026

    Article  Google Scholar 

  • Fierro J, Gómez X, Murphy JD (2014) What is the resource of second generation gaseous transport biofuels based on pig slurries in Spain? Appl Energy 114:783–789. doi:10.1016/j.apenergy.2013.08.024

    Article  CAS  Google Scholar 

  • FNR (2013) Leitfaden Biogas—Von der Gewinnung zur Nutzung (Biogas handbook - From production to valorization). Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Gülzow, Germany

  • Gabrielle B et al (2014) Paving the way for sustainable bioenergy in Europe: technological options and research avenues for large-scale biomass feedstock supply. Renew Sustain Energy Rev 33:11–25. doi:10.1016/j.rser.2014.01.050

    Article  Google Scholar 

  • Gissén C et al (2014) Comparing energy crops for biogas production—yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy 64:199–210. doi:10.1016/j.biombioe.2014.03.061

    Article  Google Scholar 

  • Grieb B, Gerlach F (2013) BioBiogas—Erfahrungen bei der Erzeugung von Biogas im Ökologischem Landbau [Experiences from biogas production in organic farming] Der kritische Agrarbericht, pp 102–108

  • Harrigan T (2003) Time-motion analysis of corn silage harvest systems. Appl Eng Agric 19:389–396

    Article  Google Scholar 

  • Herrmann A (2013) Biogas production from maize: current state, challenges and prospects. 2. Agron Environ Asp Bioenergy Res 6:372–387

    Article  CAS  Google Scholar 

  • Herrmann C, Prochnow A, Heiermann M, Idler C (2012) Particle size reduction during harvesting of crop feedstock for biogas production. II: effects on energy balance, greenhouse gas emissions and profitability. BioEnergy Res 5:937–948. doi:10.1007/s12155-012-9207-1

    Article  CAS  Google Scholar 

  • Hublin A, Schneider DR, Džodan J (2014) Utilization of biogas produced by anaerobic digestion of agro-industrial waste: energy, economic and environmental effects. Waste Manag Res. doi:10.1177/0734242x14539789

    Google Scholar 

  • Jaffrin A, Bentounes N, Joan AM, Makhlouf S (2003) Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst Eng 86:113–123. doi:10.1016/S1537-5110(03)00110-7

    Article  Google Scholar 

  • Jílek L, Pražan R, Podpěra V, Gerndtová I (2008) The effect of the tractor engine rated power on diesel fuel consumption during material transport. Res Agric Eng 54:1–8

    Google Scholar 

  • Jones P, Salter A (2013) Modelling the economics of farm-based anaerobic digestion in a UK whole-farm context. Energy Policy 62:215–225. doi:10.1016/j.enpol.2013.06.109

    Article  Google Scholar 

  • Katerji N, Mastrorilli M, Rana G (2008) Water use efficiency of crops cultivated in the Mediterranean region: review and analysis. Eur J Agron 28:493–507. doi:10.1016/j.eja.2007.12.003

    Article  Google Scholar 

  • KTBL (2009) Faustzahlen Biogas—2. Auflage (Key figures for biogas—2nd edition). Kuratorium für Technik und Bauwesen in der Landwirtschaft, Damstadt

  • Kusch S (2012) Biogas grids—An intelligent element in efficient utilisation of renewable energy. International virtual conference, section 12 industrial and civil engineering, 03–07 Dec 2012, pp 1823–1826

  • Mast B, Lemmer A, Oechsner H, Reinhardt-Hanisch A, Claupein W, Graeff-Hönninger S (2014) Methane yield potential of novel perennial biogas crops influenced by harvest date. Ind Crops Prod 58:194–203

    Article  CAS  Google Scholar 

  • Mavrogiannopoulos G (2005) Greenhouses - Environment, materials, construction, equipment. Stamoulis, Athens (in Greek). ISBN-13 978-960-351-620-0

  • Mehta CR, Singh K, Selvan MM (2011) A decision support system for selection of tractor—implement system used on Indian farms. J Terrramech 48:65–73. doi:10.1016/j.jterra.2010.05.002

    Article  Google Scholar 

  • Menardo S et al (2013) Biogas production from steam-exploded miscanthus and utilization of biogas energy and CO2 in greenhouses. Bioenergy Res 6:620–630

    Article  CAS  Google Scholar 

  • Möller K, Schulz R, Müller T (2012) Substrate inputs, nutrient flows and nitrogen loss of two centralized biogas plants in southern Germany. Nutr Cycl Agroecosyst 87:307–325

    Article  Google Scholar 

  • NSW-Farmers (2013) Estimating tractor power needs. NSW (New South Wales) Farmers Association. www.nswfarmers.org.au. Retrieved 19 Oct 2014

  • Panepinto D, Viggiano F, Genon G (2014) The potential of biomass supply for energetic utilization in a small Italian region: Basilicata. Clean Technol Environ Policy 16:833–845. doi:10.1007/s10098-013-0675-6

    Article  Google Scholar 

  • Pöschl M, Ward S, Owende P (2010) Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energy 87:3305–3321

    Article  Google Scholar 

  • Raposo F, De la Rubia MA, Fernández-Cegrí V, Borja R (2012) Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sustain Energy Rev 16:861–877

    Article  CAS  Google Scholar 

  • Šarauskis E, Buragienė S, Masilionytė L, Romaneckas K, Avižienytė D, Sakalauskas A (2014) Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy 69:227–235. doi:10.1016/j.energy.2014.02.090

    Article  Google Scholar 

  • Schievano A, D’Imporzano G, Orzi V, Colombo G, Maggiore T, Adani F (2015) Biogas from dedicated energy crops in Northern Italy: electric energy generation costs GCB Bioenergy 7:899–908. doi:10.1111/gcbb.12186

    Google Scholar 

  • Seppälä M, Paavola T, Lehtomäki A, Rintala J (2009) Biogas production from boreal herbaceous grasses—specific methane yield and methane yield per hectare. Bioresour Technol 100:2952–2958

    Article  Google Scholar 

  • Sitkey V, Gaduš J, Kliský Ľ, Dudák A (2013) Biogas production from Amaranth biomass. Acta Reg Environ 10:59–62

    Google Scholar 

  • Stürmer B, Schmid E, Eder MW (2011) Impacts of biogas plant performance factors on total substrate costs. Biomass Bioenergy 35:1552–1560. doi:10.1016/j.biombioe.2010.12.030

    Article  Google Scholar 

  • Summer P, Williams E (2014) What size farm tractor do I need? University of Georgia, College of Agriculture, GA, USA and U. S. Department of Agriculture. www.caes.uga.edu. Retrieved 20 Oct 2015

  • Taricska J, Long D, Chen JP, Hung Y-T, Zou S-W (2009) Anaerobic Digestion. In: Wang L, Pereira N, Hung Y-T (eds) Biological treatment processes, vol 8. Handbook of environmental engineering. Humana Press, pp 589–634. doi:10.1007/978-1-60327-156-1_14

  • Terzidis GA, Papazafeiriou ZG (1997) Agricultural hydraulics. Ziti S.A., Thessaloniki (in Greek)

    Google Scholar 

  • Torquati B, Venanzi S, Ciani A, Diotallevi F, Tamburi V (2014) Environmental sustainability and economic benefits of dairy farm biogas energy production: a case study in Umbria. Sustainability 6:6696

    Article  Google Scholar 

  • Tuck G, Glendining MJ, Smith P, House JI, Wattenbach M (2006) The potential distribution of bioenergy crops in Europe under present and future climate. Biomass Bioenergy 30:183–197. doi:10.1016/j.biombioe.2005.11.019

    Article  Google Scholar 

  • Vallios I, Tsoutsos T, Papadakis G (2009) Design of biomass district heating systems. Biomass Bioenergy 33:659–678. doi:10.1016/j.biombioe.2008.10.009

    Article  Google Scholar 

  • Venturi P, Venturi G (2003) Analysis of energy comparison for crops in European agricultural systems. Biomass Bioenergy 25:235–255

    Article  Google Scholar 

  • von Elsner B et al (2000) Review of structural and functional characteristics of greenhouses in European Union countries. Part II: typical designs. J Agric Eng Res 75:111–126. doi:10.1006/jaer.1999.0512

    Article  Google Scholar 

  • Walla C, Schneeberger W (2008) The optimal size for biogas plants. Biomass Bioenergy 32:551–557. doi:10.1016/j.biombioe.2007.11.009

    Article  CAS  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  Google Scholar 

  • Wilson DM et al (2014) Establishment and short-term productivity of annual and perennial bioenergy crops across a landscape gradient. BioEnergy Research 7:885–898

    Article  CAS  Google Scholar 

  • Wünsch K, Gruber S, Claupein W (2012) Profitability analysis of cropping systems for biogas production on marginal sites in southwestern Germany. Renew Energy 45:213–220. doi:10.1016/j.renene.2012.03.010

    Article  Google Scholar 

  • Zegada-Lizarazu W, Monti A (2011) Energy crops in rotation. A review. Biomass Bioenergy 35:12–25

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Greek Public Properties Company S.A., in the framework of a research contract between the company and the Agricultural University of Athens. Mathieu Brulé has been granted a Ph.D. scholarship from the Faculty of Agricultural Sciences of the University of Hohenheim that helped him contribute to this work; Mathieu Brulé would like to thank Dr. Hans Oechsner and Prof. Thomas Jungbluth for supervising his Ph.D. thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Markou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Appendices

Appendix 1

Equation for section “Total land area

Total land area (S L) is given from the operational cultivation area (S C) by the following equation:

$$S_{\text{L}} = S_{\text{C}} \times \frac{1}{{1 - k_{\text{UN}} - k_{\text{FA}} }};\quad S_{\text{L}} = 1.08 \times S_{\text{C}} \;{\text{for}}\;{\text{legumes}};\;S_{\text{L}} = 1.47 \times S_{\text{C}} \; {\text{for}}\;{\text{other}}\;{\text{crops}}$$
(1)

Equations for section “Engine power, number of tractors and fuel consumption for cultivation

The required size of the ploughing implement (W IT) attached to the tractor was calculated according to the following equation:

$$W_{IT} = \frac{{10 S_{C} }}{{T_{A} \times v_{T} }}$$
(2)

S C operational cultivation area (ha), T A duration available to perform ploughing operations, here: 160 h, v T tractor velocity (km/h), here 6 km/h for ploughing operation.

Drawbar power (P D; kW) corresponding to the selected implement size is calculated and converted into power-take-off (P TO; kW), and engine power for tillage (P EP; kW) applying the following equation and conversion factors (Mehta et al. 2011; NSW-Farmers 2013):

$$P_{D} = \frac{{R_{S} \times {\text{d}}_{\text{IT}} \times {\text{W}}_{\text{IT}} \times v_{T} }}{3600}$$
(3)
$$P_{TO} = P_{D} \times 1.8$$
(4)
$$P_{EP} = P_{TO} \times 1.18 \times \left( {1 + {\text{k}}_{\text{PM}} } \right)$$
(5)

R S soil resistance, here: 890 N/(mIW × cmDS), d IT depth of tillage (plough), here: 20 cm, W IT width of implement used for tillage (plough), v T tractor velocity, here: 6 km/h, k PM additional factor providing a safety margin in tractor sizing, here: 10%

Linear correlation between total engine power (P EP; kW) and the surface of cultivated area (S C; ha) is described by the following eq.:

$$P_{\text{EP}} = 0.656 \times S_{\text{C}} + 0.294$$
(6)

Specific power requirements [k P; (kW/(mIW × (km/h))] of each implement were calculated with the following equation, with values for the factors R s and D I taken from Table 8.

$$k_{\text{P}} = R_{\text{s}} \times D_{\text{I}} \times 1.18 \times 1.8$$
(7)

Time (t W; h) required to perform each individual field operation is given by the following equations, according to the total distance travelled by the tractors (d T; km):

$$t_{\text{W}} = \frac{{S_{\text{C}} }}{{d_{\text{T}} \times v_{\text{T}} }}$$
(8)
$$d_{\text{T}} = \frac{{S_{\text{C}} \times \left( {1 + k_{\text{T}} } \right) \times 10}}{{W_{\text{I}} \times v_{\text{T}} }}$$
(9)

k T factor to include tractor turns on the fields, here: 1%, W I width (m) of each implement, r U engine power usage, set at 0.8 (80%) to prevent engine overloading (Mehta et al. 2011).

Hourly diesel fuel consumptions (N H; L/h) for each field work were estimated using the empirical equation given by Jílek et al. (2008). Subsequently, the total fuel consumption (N T; L) of tractors was calculated for the work durations (t W; h) estimated previously for each field work:

$$N_{\text{H}} = 0.036 \times P_{\text{E}}^{0.938} \times r_{\text{U}}^{0.781}$$
(10)

where P E is for the engine power (kW).

$$N_{\text{T}} = N_{\text{H}} \times t_{\text{W}}$$
(11)

Equations for section “Irrigation and fertilizing of energy crops

Pump power (P P; kW) required to drive the sprinklers was calculated from the total manometric water pressure (H T, m), accounting for pressure losses in the pipes (H L, m) (Terzidis and Papazafeiriou 1997):

$$P_{\text{P}} = \frac{{H_{\text{T}} \times Q \times 9.81}}{{3600 \times r_{\text{e}} }}$$
(12)
$$H_{\text{T}} = H_{\text{L}} + H_{\text{E}} + H_{\text{W}}$$
(13)
$$H_{\text{L}} = 1.13 \times 10^{11} \times {\left( {\frac{Q}{C}} \right)}^{1.852} \times D^{ - 4.87}$$
(14)

H E operational manometric pressure of equipment, here: 80 m, H W depth of the water body from which water is pumped, here: 10 m, Q water flow (m3/h), depends on irrigation requirements, r e pump efficiency, set at 70% (Buckmaster 2009), C constant depending on material properties, here: 150 (Terzidis and Papazafeiriou 1997), D inner diameter of the tube (mm).

Total fertilization requirements:

$$R_{\text{FERT}} = 100 \times R_{\text{E}} \times \left( {1 - R_{\text{L}} } \right) \times R_{\text{A}} ;R_{\text{FERT}} = 36\%$$
(15)

R E fertilizing efficiency (here: 80%), R L nutrient losses during storage of the digestates, here: 35%, R A direct availability of nutrients in digestates, here: 70%.

Equations for section “Transportation and silaging of energy crops and digestates

Transport distance of harvested biomass to bunker silos was calculated by:

$$d_{\text{T}} = \frac{2}{3} \times \tau \times \sqrt {\frac{{M_{\text{BF}} }}{{k_{\text{AV}} \times 100 \times Y_{\text{BF}} \times \pi }}}$$
(16)

d T haul distance (km), τ tortuosity factor, here: 1.8, M BF fresh mass of crop biomass (t) to be transported, k AV availability of biomass, here: 0.3, Y BF fresh biomass yield before ensiling (t/ha).

The total distance (T D; km) that the tractor(s) need to cover transportations was calculated as follows:

$$T_{\text{D}} = 2 \times \frac{V}{{C_{\text{R}} }} \times d_{\text{T}}$$
(17)

V total volume of biomass to be transported (m3), C R Carriage capacity of the tractor (m3): here 18 m3.

The number of tractors required for biomass transportation (nT) was calculated according to:

$$n_{\text{TT}} = 0.44 + 0.0746 \times \left[ {\frac{{1.6 \times P_{TT} \times d_{\text{T}} }}{{M_{\text{TT}} \times v_{\text{TT}} }}} \right] + 1.06$$
(18)

n T number of tractors required, P TT engine power of transport tractors (kW), M TT transportation capacity of the tractors, here: 20 t of dry matter, v TT average speed of the transport tractors, here: 20 km/h.

The operation time of packing tractors for silaging (t SIL) was calculated as

$$t_{\text{SIL}} = r_{\text{SIL}} \times M_{\text{BD}}$$
(19)

r SIL packing rate, here: 0.017 h/t DM, M BD dry mass of crops to be packed (t DM).

Equations for section “Methane yields of energy crops

Yields of dry ensiled biomass (Y SD; t DM/ha) are calculated for each crop:

$$Y_{\text{SD}} = Y_{\text{BF}} \times (1 - k_{\text{LO}} ) \times C_{\text{DM}}$$
(20)

Y BF yield of fresh biomass (t FM/ha), k LO factor accounting for losses in harvesting and silaging, here: 13% (Davies 2004), C DM dry matter content of silage (%FM/100).

Yields of dry ensiled biomass are converted into methane yields per hectare (\(Y_{{{\text{CH}}_{4} }}\); m3 CH4/ha):

$$Y_{{{\text{CH}}_{4} }} = Y_{\text{SD}} \times C_{\text{VS}} \times C_{{{\text{CH}}_{4} }}$$
(21)

C VS volatile solids content of dry mass (%DM/100), \(C_{{{\text{CH}}_{4} }}\) specific methane yield (m3 CH4/t VS).

Equations for section “Design of the greenhouse system

Day heating degrees (T HD; °C) and night heating degrees (T HN;  °C) are calculated as follows:

$$T_{\text{HD}} = \mathop \sum \limits_{i = 1}^{N} \left( {\left( {T_{\text{d}} - \Delta T_{\text{SUN}} } \right) - \frac{{T_{i\hbox{max} } + T_{{i{\text{av}}}} }}{2}} \right) \times D_{\text{d}}$$
(22)
$$T_{\text{HN}} = \mathop \sum \limits_{i = 1}^{N} \left( {T_{\text{n}} - \frac{{T_{i\hbox{min} } + T_{{i{\text{av}}}} }}{2}} \right) \times D_{\text{n}}$$
(23)

T imax maximum day temperature in the month (°C), T iav average day temperature in the month (°C), T d target day temperature in the month, here: 22 °C, ΔT SUN indoor/outdoor temperature difference due to greenhouse effect, here: 6 °C, T n target night temperature in the month, here: 14 °C, D d day duration (h), D n night duration (h), N month of the year in the cultivation period (September–July).

Specific investment costs (€/m2) of the greenhouse in relation to the surface area were calculated with the following equation (input parameters for economic evaluation cf. “Appendix 2” section):

$$C_{\text{G}} = 260 \times S_{\text{G}}^{ - 0.155}$$
(24)

S G greenhouse surface (ha).

Electrical (Y E;  %) and thermal efficiency (Y TH;  %) of the CHP unit was calculated with:

$$Y_{\text{E}} = \left( {5.572 \times \log_{10} \left( {P_{\text{EE}} } \right) + 22.43} \right) \times k_{\text{PL}}$$
(25)
$$Y_{\text{TH}} = Y_{\text{E}} \times 1.2$$
(26)

P EE electrical power of the engine, k PL partial load operation factor, here: 97%.

Equations for section “Methodology for economic evaluation

For this purpose, annual cash flow calculations were made using the following equation:

$${\text{NPV}} = \mathop \sum \limits_{i = 1}^{t} \frac{{C_{t} }}{{\left( {1 + r} \right)^{t} }} - C_{0}$$
(27)

C t net cash inflow during the period t, C 0 total initial investment costs, r discount rate; here 6%, T number of time periods (years).

The PBP was calculated as follows:

$${\text{PBP}} = 1 + Y_{\text{N}} - \frac{v}{p}$$
(28)

Y N number of years after the initial investment at which the last negative value of cumulative cash flow occurs, v value of cumulative cash flow at the year with the last negative value of cumulative cash flow, p value of yearly cash flow at the year with the first positive value of cumulative cash flow.

Appendix 2

See Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17.

Table 6 Energy crops: cultivation requirements
Table 7 Energy crops: cost of equipment (data taken from Greek market)
Table 8 Calculation of engine power and specific power requirement with medium-sized equipment for maize cultivation (NSW-Farmers 2013; Summer and Williams 2014)
Table 9 Total mineral fertilizer requirements of the energy crops considered in this study
Table 10 Energy crops and greenhouse: price of fertilizing nutrients (data taken from Greek market)
Table 11 Productivity and methane yields of the energy crops used for biogas production
Table 12 Greenhouse: cost of equipment (data taken from Greek market)
Table 13 Greenhouse: fertilizer requirements
Table 14 Greenhouse: cost of operation
Table 15 Investment and operation costs of the biogas plant
Table 16 Biogas plant: depreciation parameters
Table 17 Indirect input of energy based on primary energy consumption for the production of agro-chemicals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markou, G., Brulé, M., Balafoutis, A. et al. Biogas production from energy crops in northern Greece: economics of electricity generation associated with heat recovery in a greenhouse. Clean Techn Environ Policy 19, 1147–1167 (2017). https://doi.org/10.1007/s10098-016-1314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1314-9

Keywords

Navigation