Skip to main content

Advertisement

Log in

Line-focusing concentrating solar collector-based power plants: a review

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Concentrated solar power (CSP) plant is an emerging technology among different renewable energy sources. Parabolic trough collector (PTC)-based CSP plant, using synthetic or organic oil as a heat-transfer fluid, is the most advanced technology. About 87 % of the operational capacities of CSP plants worldwide are based on PTC technology. Direct steam-generating linear Fresnel reflector (LFR) systems have been developed as a cost-effective alternative to PTC systems. Line-focusing concentrating solar collectors (PTC and LFR), with single-axis tracking, are simple in design and easy to operate. Prior to the detailed design of a CSP plant, it is necessary to finalize type of the solar field, type of the power-generating cycle, overall plant configuration, sizing of the solar field and the power block, etc. The optimal design of a CSP plant minimizes the levelized cost of energy for a given site. In this paper, a detailed review of important design parameters which affect the design of line-focusing concentrating solar collector-based power plants is presented. This includes parameters for solar collector field design, receiver, heat-transfer fluid, thermal energy storage, power-generating cycle, sizing and configuration of the plant, etc. This review may provide a reference for designing CSP plants. Future research directions are also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CLFR:

Compact linear Fresnel reflector

CSP:

Concentrated solar power

DSG:

Direct steam generation

HMDS:

Hexamethyldisiloxane

HTF:

Heat-transfer fluid

LFR:

Linear Fresnel reflector

OMTS:

Octamethyltrisiloxane

ORC:

Organic Rankine cycle

PPA:

Power purchase agreements

PTC:

Parabolic trough collector

SAM:

System advisor model

SCA:

Solar collector assembly

SM:

Solar multiple

SRC:

Steam Rankine cycle

A :

Willans’ line equation parameter (W)

A p :

Aperture area of solar collector field (m2)

B :

Willans’ line equation parameter (J/kg)

C :

Cost ($)

DNI:

Direct normal irradiance (W/m2)

I :

Aperture-effective solar radiation (W/m2)

K θ :

Incidence angle modifier effect

LCOE:

Levelized cost of energy ($/kWh)

M :

Mass flow rate (kg/s)

P :

Pressure (MPa)

T :

Temperature (°C)

U L :

Heat loss coefficient based on aperture area [W/(m2 K)]

∆:

Difference

η :

Efficiency

a :

Ambient

CL :

Collector

m :

Mean

max :

Maximum

min :

Minimum

o :

Optical

References

  • Abbas R, Martínez-Val JM (2015) Analytic optical design of linear Fresnel collectors with variable widths and shifts of mirrors. Renew Energy 75:81–92

    Article  Google Scholar 

  • Abbas R, Montes MJ, Piera M, Martínez-Val JM (2012) Solar radiation concentration features in linear Fresnel reflector arrays. Energy Convers Manag 54:133–144

    Article  Google Scholar 

  • Abbas R, Montes MJ, Rovira A, Martínez-Val JM (2016) Parabolic trough collector or linear Fresnel collector? A comparison of optical features including thermal quality based on commercial solutions. Sol Energy 124:198–215

    Article  Google Scholar 

  • Abutayeh M, Goswami YD, Stefanakos EK (2013) Solar thermal power plant simulation. Environ Prog Sustain Energy 32(2):417–424

    Article  CAS  Google Scholar 

  • Abutayeh M, Alazzam A, El-Khasawneh B (2014) Balancing heat transfer fluid flow in solar fields. Sol Energy 105:381–389

    Article  Google Scholar 

  • Al-Ansary H, Zeitoun O (2011) Numerical study of conduction and convection heat losses from a half-insulated air-filled annulus of the receiver of a parabolic trough collector. Sol Energy 85:3036–3045

    Article  Google Scholar 

  • Algieri A, Morrone P (2012) Comparative energetic analysis of high-temperature subcritical and transcritical organic Rankine cycle (ORC). A biomass application in the Sibari district. Appl Therm Eng 36:236–244

    Article  CAS  Google Scholar 

  • Al-Sulaiman FA (2013) Energy and sizing analyses of parabolic trough solar collector integrated with steam and binary vapor cycles. Energy 58:561–570

    Article  CAS  Google Scholar 

  • Al-Sulaiman FA (2014) Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles. Energy Convers Manag 77:441–449

    Article  CAS  Google Scholar 

  • Ashby MF, Cebon D (1993) Materials selection in mechanical design. J Phys 3:C7–1–C7–9

    Google Scholar 

  • Ashouri M, Vandani AMK, Mehrpooya M, Ahmadi MH, Abdollahpour A (2015) Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector. Energy Convers Manag 105:1328–1339

    Article  CAS  Google Scholar 

  • ASHRAE ANSI/ASHRAE Standard 93-2010 (2010) Methods of testing to determine the thermal performance of solar collectors

  • Astolfi M, Xodo L, Romano MC, Macchi E (2011) Geothermics technical and economical analysis of a solar—geothermal hybrid plant based on an organic Rankine cycle. Geothermics 40:58–68

    Article  Google Scholar 

  • Astolfi M, Romano MC, Bombarda P, Macchi E (2014) Binary ORC (organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources—part B: techno-economic optimization. Energy 66:435–446

    Article  CAS  Google Scholar 

  • Aurousseau A, Vuillerme V, Bezian J-J (2016) Control systems for direct steam generation in linear concentrating solar power plants—a review. Renew Sustain Energy Rev 56:611–630

    Article  Google Scholar 

  • Baharoon DA, Rahman HA, Omar WZW, Fadhl SO (2015) Historical development of concentrating solar power technologies to generate clean electricity efficiently—a review. Renew Sustain Energy Rev 41:996–1027

    Article  Google Scholar 

  • Bao J, Zhao L (2013) A review of working fluid and expander selections for organic Rankine cycle. Renew Sustain Energy Rev 24:325–342

    Article  CAS  Google Scholar 

  • Barale G, Heimsath A, Nitz P, Toro A (2010) Optical design of a linear Fresnel collector for Sicily. In: SolarPACES, Perpignan, France

  • Barra O, Conti M, Santamata E, Scarmozzino R, Visentin R (1977) Shadows’ effect in a large scale solar power plant. Sol Energy 19:759–762

    Article  Google Scholar 

  • Benoit H, Spreafico L, Gauthier D, Flamant G (2016) Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: properties and heat transfer coefficients. Renew Sustain Energy Rev 55:298–315

    Article  CAS  Google Scholar 

  • Benyakhlef S, Al Mers A, Merroun O, Bouatem A, Boutammachte N, El Alj S, Ajdad H, Erregueragui Z, Zemmouri E (2016) Impact of heliostat curvature on optical performance of linear Fresnel solar concentrators. Renew Energy 89:463–474

    Article  Google Scholar 

  • Borunda M, Jaramillo OA, Dorantes R, Reyes A (2016) Organic Rankine cycle coupling with a parabolic trough solar power plant for cogeneration and industrial processes. Renew Energy 86:651–663

    Article  Google Scholar 

  • Butler C, Grimes R (2014) The effect of wind on the optimal design and performance of a modular air-cooled condenser for a concentrated solar power plant. Energy 68:886–895

    Article  Google Scholar 

  • Cabello JM, Cejudo JM, Luque M, Ruiz F, Deb K, Tewari R (2011) Optimization of the size of a solar thermal electricity plant by means of genetic algorithms. Renew Energy 36:3146–3153

    Article  Google Scholar 

  • Casartelli D, Binotti M, Silva P, Macchi E, Roccaro E, Passera T (2015) Power block off-design control strategies for indirect solar ORC cycles. Energy Procedia 69:1220–1230

    Article  CAS  Google Scholar 

  • Casati E, Galli A, Colonna P (2013) Thermal energy storage for solar-powered organic Rankine cycle engines. Sol Energy 96:205–219

    Article  Google Scholar 

  • Cau G, Cocco D (2014) Comparison of medium-size concentrating solar power plants based on parabolic trough and linear Fresnel collectors. Energy Procedia 45:101–110

    Article  Google Scholar 

  • Chambers T, Raush J, Russo B (2014) Installation and operation of parabolic trough organic Rankine cycle solar thermal power plant in South Louisiana. Energy Procedia 49:1107–1116

    Article  Google Scholar 

  • Chen H, Goswami DY, Stefanakos EK (2010) A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew Sustain Energy Rev 14:3059–3067

    Article  CAS  Google Scholar 

  • Cheng Z-D, He Y-L, Du B-C, Wang K, Liang Q (2015) Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm. Appl Energy 148:282–293

    Article  Google Scholar 

  • Clifford KH (2008) Software and codes for analysis of concentrating solar power technologies, SANDIA report SAND2008-8053

  • Cocco D, Cau G (2015) Energy and economic analysis of concentrating solar power plants based on parabolic trough and linear Fresnel collectors. Proc IMechE Part A 229(6):677–688

    Article  Google Scholar 

  • Colmenar-Santos A, Bonilla-Gómez J-L, Borge-Diez D, Castro-Gil M (2015) Hybridization of concentrated solar power plants with biogas production systems as an alternative to premiums: the case of Spain. Renew Sustain Energy Rev 47:186–197

    Article  Google Scholar 

  • Corgnale C, Hardy B, Motyka T, Zidan R, Teprovich J, Peters B (2014) Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants. Renew Sustain Energy Rev 38:821–833

    Article  CAS  Google Scholar 

  • Demagh Y, Bordja I, Kabar Y, Benmoussa H (2015) A design method of an S-curved parabolic trough collector absorber with a three-dimensional heat flux density distribution. Sol Energy 122:873–884

    Article  Google Scholar 

  • Desai NB, Bandyopadhyay S (2015a) Optimization of concentrating solar thermal power plant based on parabolic trough collector. J Clean Prod 89:262–271

    Article  Google Scholar 

  • Desai NB, Bandyopadhyay S (2015b) Integration of parabolic trough and linear Fresnel collectors for optimum design of concentrating solar thermal power plant. Clean Technol Environ Policy 17:1945–1961

    Article  CAS  Google Scholar 

  • Desai NB, Bandyopadhyay S (2016a) Biomass-fueled organic Rankine cycle-based cogeneration system. In: Ng DKS, Tan RR, Foo DCY, El-Halwagi MM (eds) Process design strategies for biomass conversion systems. Wiley, Chichester. doi:10.1002/9781118699140.ch10

    Google Scholar 

  • Desai NB, Bandyopadhyay S (2016b) Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle. Appl Therm Eng 95:471–481

    Article  CAS  Google Scholar 

  • Desai NB, Kedare SB, Bandyopadhyay S (2014a) Optimization of design radiation for concentrating solar thermal power plants without storage. Sol Energy 107:98–112

    Article  Google Scholar 

  • Desai NB, Bandyopadhyay S, Nayak JK, Banerjee R, Kedare SB (2014b) Simulation of 1 mwe solar thermal power plant. Energy Procedia 57:507–516

    Article  Google Scholar 

  • Desideri U, Campana PE (2014) Analysis and comparison between a concentrating solar and a photovoltaic power plant. Appl Energy 113:422–433

    Article  Google Scholar 

  • DiPippo R (2004) Second law assessment of binary plants generating power from low-temperature geothermal fluids. Geothermics 33(5):565–586

    Article  CAS  Google Scholar 

  • Dunham MT, Iverson BD (2014) High-efficiency thermodynamic power cycles for concentrated solar power systems. Renew Sustain Energy Rev 30:758–770

    Article  CAS  Google Scholar 

  • Ehtiwesh IAS, Coelho MC, Sousa ACM (2016) Exergetic and environmental life cycle assessment analysis of concentrated solar power plants. Renew Sustain Energy Rev 56:145–155

    Article  Google Scholar 

  • Facão J, Oliveira AC (2011) Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Renew Energy 36:90–96

    Article  Google Scholar 

  • Feldhoff JF, Benitez D, Eck M, Riffelmann KJ (2010) Economic potential of solar thermal power plants with direct steam generation compared with HTF plants. J Sol Energy Eng 132(4):041001

    Article  Google Scholar 

  • Feldhoff JF, Ortiz-Vives F, Schulte-Fischedick J, Laing D, Schnatbaum-Laumann L, Eck M, Schmitz K (2012) Comparative system analysis of direct steam generation and synthetic oil parabolic trough power plants with integrated thermal storage. Sol Energy 86:520–530

    Article  CAS  Google Scholar 

  • Fernández FJ, Prieto MM, Suárez I (2011) Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids. Energy 36:5239–5249

    Article  CAS  Google Scholar 

  • Fernández-García A, Zarza E, Valenzuela L, Pérez M (2010) Parabolic-trough solar collectors and their applications. Renew Sustain Energy Rev 14:1695–1721

    Article  CAS  Google Scholar 

  • Ferrara F, Gimelli A, Luongo A (2014) Small-scale concentrated solar power (CSP) plant: ORCs comparison for different organic fluids. Energy Procedia 45:217–226

    Article  CAS  Google Scholar 

  • Feuermann D, Gordon J (1991) Analysis of a two-stage linear Fresnel reflector solar concentrator. J Sol Energy Eng 113(4):272–279

    Article  CAS  Google Scholar 

  • Flores Larsen S, Altamirano M, Hernández A (2012) Heat loss of a trapezoidal cavity absorber for a linear Fresnel reflecting solar concentrator. Renew Energy 39:198–206

    Article  Google Scholar 

  • Flueckiger SM, Iverson BD, Garimella SV, Pacheco JE (2014) System-level simulation of a solar power tower plant with thermocline thermal energy storage. Appl Energy 113:86–96

    Article  Google Scholar 

  • Franchini G, Perdichizzi A, Ravelli S, Barigozzi G (2013) A comparative study between parabolic trough and solar tower technologies in solar Rankine cycle and integrated solar combined cycle plants. Sol Energy 98:302–314

    Article  Google Scholar 

  • Fuqiang W, Jianyu T, Lanxin M, Chengchao W (2015) Effects of glass cover on heat flux distribution for tube receiver with parabolic trough collector system. Energy Convers Manag 90:47–52

    Article  Google Scholar 

  • Fuqiang W, Qingzhi L, Huaizhi H, Jianyu T (2016) Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics. Appl Energy 164:411–424

    Article  Google Scholar 

  • Ganesh NS, Srinivas T (2012) Design and modeling of low temperature solar thermal power station. Appl Energy 91(1):180–186

    Article  CAS  Google Scholar 

  • García IL, Álvarez JL, Blanco D (2011) Performance model for parabolic trough solar thermal power plants with thermal storage: comparison to operating plant data. Sol Energy 85:2443–2460

    Article  Google Scholar 

  • García-Barberena J, Garcia P, Sanchez M, Blanco MJ, Lasheras C, Padrós A, Arraiza J (2012) Analysis of the influence of operational strategies in plant performance using SimulCET, simulation software for parabolic trough power plants. Sol Energy 86:53–63

    Article  Google Scholar 

  • Gharbi NE, Derbal H, Bouaichaoui S, Said N (2011) A comparative study between parabolic trough collector and linear Fresnel reflector technologies. Energy Procedia 6:565–572

    Article  Google Scholar 

  • Ghomrassi A, Mhiri H, Bournot P (2015) Numerical study and optimization of parabolic trough solar collector receiver tube. J Sol Energy Eng 137:051003

    Article  Google Scholar 

  • Gil A, Medrano M, Martorell I, Lazaro A, Dolado P, Zalba B, Cabeza LF (2010) State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew Sustain Energy Rev 14(1):31–55

    Article  CAS  Google Scholar 

  • Gilman P (2010) Solar advisor model user manual, technical report, National Renewable Energy Laboratory, Golden, Colorado

  • Giostri A, Binotti M, Astolfi M, Silva P, Macchi E, Manzolini G (2012a) Comparison of different solar plants based on parabolic trough technology. Sol Energy 86:1208–1221

    Article  CAS  Google Scholar 

  • Giostri A, Binotti M, Silva P, Macchi E, Manzolini G (2012b) Comparison of two linear collectors in solar thermal plants: parabolic trough versus Fresnel. J Sol Energy Eng 135:011001

    Article  CAS  Google Scholar 

  • Goswami RP, Negi BS, Sehgal HK, Sootha GD (1990) Optical designs and concentration characteristics of a linear Fresnel reflector solar concentrator with a triangular absorber. Solar Energy Mater 21:237–251

    Article  Google Scholar 

  • Gupta MK, Kaushik SC, Ranjan KR, Panwar NL, Reddy VS, Tyagi SK (2015) Thermodynamic performance evaluation of solar and other thermal power generation systems: a review. Renew Sustain Energy Rev 50:567–582

    Article  Google Scholar 

  • Gutiérrez-Arriaga CG, Abdelhady F, Bamufleh HS, Serna-González M, El-Halwagi MM, Ponce-Ortega JM (2014) Industrial waste heat recovery and cogeneration involving organic Rankine cycles. Clean Technol Environ Policy 17(3):767–779

    Article  CAS  Google Scholar 

  • He Y-L, Mei D-H, Tao W-Q, Yang W-W, Liu H-L (2012) Simulation of the parabolic trough solar energy generation system with organic Rankine cycle. Appl Energy 97:630–641

    Article  CAS  Google Scholar 

  • Hernández-Moro J, Martínez-Duart JM (2013) Analytical model for solar PV and CSP electricity costs: present LCOE values and their future evolution. Renew Sustain Energy Rev 20:119–132

    Article  Google Scholar 

  • Hertel JD, Martinez-Moll V, Pujol-Nadal R (2015) Estimation of the influence of different incidence angle modifier models on the biaxial factorization approach. Energy Convers Manag 106:249–259

    Article  Google Scholar 

  • Hirsch T, Feldhoff JF, Hennecke K, Pitz-Paal R (2014) Advancements in the field of direct steam generation in linear solar concentrators—a review. Heat Transf Eng 35:258–271

    Article  CAS  Google Scholar 

  • Huang Z, Yu GL, Li ZY, Tao WQ (2015) Numerical study on heat transfer enhancement in a receiver tube of parabolic trough solar collector with dimples, protrusions and helical fins. Energy Procedia 69:1306–1316

    Article  Google Scholar 

  • Hung TC, Shai TY, Wang SK (1997) A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy 22(7):661–667

    Article  CAS  Google Scholar 

  • IIT Bombay (2014) Solar thermal simulator version 2.0. www.ese.iitb.ac.in/oldweb/simulator/simulator.html

  • IEA (2014) International Energy Agency. Technology roadmap—solar thermal electricity. www.iea.org/publications/freepublications/publication/technologyroadmapsolarthermalelectricity_2014edition.pdf. Accessed 9 May 2016

  • Izquierdo S, Montañés C, Dopazo C, Fueyo N (2010) Analysis of CSP plants for the definition of energy policies: the influence on electricity cost of solar multiples, capacity factors and energy storage. Energy Policy 38(10):6215–6221

    Article  Google Scholar 

  • Jain A, Vu T, Mehta R, Mittal SK (2013) Optimizing the cost and performance of parabolic trough solar plants with thermal energy storage in India. Environ Prog Sustain Energy 32(3):824–829

    Article  CAS  Google Scholar 

  • Jamel MS, Abd Rahman A, Shamsuddin AH (2013) Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renew Sustain Energy Rev 20:71–81

    Article  Google Scholar 

  • Kalina AI (1984) Combined-cycle system with novel bottoming cycle. J Eng Gas Turbines Power 106(4):737–742

    Article  CAS  Google Scholar 

  • Kearney D, Herrmann U, Nava P, Kelly B, Mahoney R, Pacheco J, Cable R, Potrovitza N, Blake D, Price H (2003) Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J Sol Energy Eng 125:170–176

    Article  CAS  Google Scholar 

  • Kibaara S, Chowdhury S, Chowdhury SP (2012) Analysis of cooling methods of parabolic trough concentrating solar thermal power plant. IEEE international conference on power system technology, pp 1–6

  • Kost C, Flath CM, Möst D (2013) Concentrating solar power plant investment and operation decisions under different price and support mechanisms. Energy Policy 61:238–248

    Article  Google Scholar 

  • Krishnamurthy P, Mishra S, Banerjee R (2012) An analysis of costs of parabolic trough technology in India. Energy Policy 48:407–419

    Article  Google Scholar 

  • Kumar KR, Reddy KS (2012) 4-E (energy–exergy–environmental–economic) analyses of line-focusing stand-alone concentrating solar power plants. Int J Low-Carbon Technol 7:82–96

    Article  CAS  Google Scholar 

  • Kuravi S, Trahan J, Goswami DY, Rahman MM, Stefanakos EK (2013) Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust Sci 39:285–319

    Article  Google Scholar 

  • Lai NA, Wendland M, Fischer J (2011) Working fluids for high-temperature organic Rankine cycles. Energy 36:199–211

    Article  CAS  Google Scholar 

  • Lecompte S, Huisseune H, van den Broek M, Vanslambrouck B, De Paepe M (2015) Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew Sustain Energy Rev 47:448–461

    Article  CAS  Google Scholar 

  • Li G (2016) Organic Rankine cycle performance evaluation and thermoeconomic assessment with various applications part I: energy and exergy performance evaluation. Renew Sustain Energy Rev 53:477–499

    Article  CAS  Google Scholar 

  • Li Y, Yang Y (2014) Thermodynamic analysis of a novel integrated solar combined cycle. Appl Energy 122:133–142

    Article  Google Scholar 

  • Li M, Li GL, Ji X, Yin F, Xu L (2011) The performance analysis of the trough concentrating solar photovoltaic/thermal system. Energy Convers Manag 52:2378–2383

    Article  CAS  Google Scholar 

  • Linke P, Papadopoulos A, Seferlis P (2015) Systematic methods for working fluid selection and the design, integration and control of organic Rankine cycles—a review. Energies 8:4755–4801

    Article  CAS  Google Scholar 

  • Liqreina A, Qoaider L (2014) Dry cooling of concentrating solar power (CSP) plants, an economic competitive option for the desert regions of the MENA region. Sol Energy 103:417–424

    Article  Google Scholar 

  • Liu M, Steven Tay NH, Bell S, Belusko M, Jacob R, Will G, Saman W, Bruno F (2016) Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew Sustain Energy Rev 53:1411–1432

    Article  CAS  Google Scholar 

  • Lolos PA, Rogdakis ED (2009) A Kalina power cycle driven by renewable energy sources. Energy 34(4):457–464

    Article  CAS  Google Scholar 

  • Manenti F, Ravaghi-Ardebili Z (2013) Dynamic simulation of concentrating solar power plant and two-tanks direct thermal energy storage. Energy 55:89–97

    Article  Google Scholar 

  • Manikumar R, Valan Arasu A (2014) Heat loss characteristics study of a trapezoidal cavity absorber with and without plate for a linear Fresnel reflector solar concentrator system. Renew Energy 63:98–108

    Article  Google Scholar 

  • Manzolini G, Giostri A, Saccilotto C, Silva P, Macchi E (2011a) Development of an innovative code for the design of thermodynamic solar power plants part A: code description and test case. Renew Energy 36:1993–2003

    Article  Google Scholar 

  • Manzolini G, Giostri A, Saccilotto C, Silva P, Macchi E (2011b) Development of an innovative code for the design of thermodynamic solar power plants part B: performance assessment of commercial and innovative technologies. Renew Energy 36:2465–2473

    Article  Google Scholar 

  • Manzolini G, Giostri A, Saccilotto C, Silva P, Macchi E (2012) A numerical model for off-design performance prediction of parabolic trough based solar power plants. J Sol Energy Eng 134:011003

    Article  Google Scholar 

  • Mao Q (2016) Recent developments in geometrical con figurations of thermal energy storage for concentrating solar power plant. Renew Sustain Energy Rev 59:320–327

    Article  Google Scholar 

  • Maraver D, Royo J, Lemort V, Quoilin S (2014) Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications. Appl Energy 117:11–29

    Article  CAS  Google Scholar 

  • Martín H, de la Hoz J, Velasco G, Castilla M, García de Vicuña JL (2015) Promotion of concentrating solar thermal power (CSP) in Spain: performance analysis of the period 1998–2013. Renew Sustain Energy Rev 50:1052–1068

    Article  Google Scholar 

  • Mathur S, Kandpal T, Negi B (1991a) Optical design and concentration characteristics of linear Fresnel reflector solar concentrators-I. Mirror elements of varying width. Energy Convers Manag 31(3):205–219

    Article  Google Scholar 

  • Mathur S, Kandpal T, Negi B (1991b) Optical design and concentration characteristics of linear Fresnel reflector solar concentrators- II. Mirror elements of equal width. Energy Convers Manag 31(3):321–332

    Google Scholar 

  • Mavromatis SP, Kokossis AC (1998) Conceptual optimisation of utility networks for operational variations—I. Targets and level optimisation. Chem Eng Sci 53:1585–1608

    Article  CAS  Google Scholar 

  • McIntire WR (1982) Factored approximations for biaxial incident angle modifiers. Sol Energy 29:315–322

    Article  Google Scholar 

  • Mills DR, Morrison GL (2000) Compact linear Fresnel reflector solar thermal power plants. Sol Energy 68(3):263–283

    Article  Google Scholar 

  • Mittelman G, Epstein M (2010) A novel power block for CSP systems. Sol Energy 84:1761–1771

    Article  Google Scholar 

  • Modi A, Haglind F (2014) Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation. Appl Therm Eng 65(1):201–208

    Article  Google Scholar 

  • Modi A, Haglind F (2015) Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications. Appl Therm Eng 76:196–205

    Article  Google Scholar 

  • Moghimi MA, Craig KJ, Meyer JP (2015) Optimization of a trapezoidal cavity absorber for the linear Fresnel reflector. Sol Energy 119:343–361

    Article  Google Scholar 

  • Montes MJ, Abánades A, Martínez-Val JM, Valdés M (2009a) Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Sol Energy 83:2165–2176

    Article  CAS  Google Scholar 

  • Montes MJ, Abánades A, Martínez-Val JM (2009b) Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Sol Energy 83(5):679–689

    Article  Google Scholar 

  • Montes MJ, Abánades A, Martínez-Val JM (2010) Thermofluidynamic model and comparative analysis of parabolic trough collectors using oil, water/steam, or molten salt as heat transfer fluids. J Sol Energy Eng 132:021001

    Article  CAS  Google Scholar 

  • Montes MJ, Rubbia C, Abbas R, Martínez-Val JM (2014) A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power. Energy 73:192–203

    Article  Google Scholar 

  • Moore J, Grimes R, Walsh E, O’Donovan A (2014) Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser. Energy 69:378–391

    Article  Google Scholar 

  • Morin G, Dersch J, Platzer W, Eck M, Häberle A (2012) Comparison of linear Fresnel and parabolic trough collector power plants. Sol Energy 86:1–12

    Article  Google Scholar 

  • Nayak JK, Kedare SB, Banerjee R, Bandyopadhyay S, Desai NB, Paul S, Kapila A (2015) A 1 MW national solar thermal research cum demonstration facility at Gwalpahari, Haryana, India. Curr Sci 109(8):1445–1457

    Article  Google Scholar 

  • Nemet A, Kravanja Z, Klemeš JJ (2012) Integration of solar thermal energy into processes with heat demand. Clean Technol Environ Policy 14:453–463

    Article  Google Scholar 

  • Nixon JD, Davies PA (2012) Cost-exergy optimisation of linear Fresnel reflectors. Sol Energy 86:147–156

    Article  Google Scholar 

  • NREL (2011) National Renewable Energy Laboratory, system advisor model (SAM) software, version 2011.5.4

  • NREL (2015) National Renewable Energy Laboratory. U.S. Department of Energy, Washington, D.C. www.nrel.gov/csp/solarpaces/by_status.cfm. Accessed 5 Oct 2015

  • Paetzold J, Cochard S, Fletcher DF, Vassallo A (2015) Wind engineering analysis of parabolic trough collectors to optimise wind loads and heat loss. Energy Procedia 69:168–177

    Article  Google Scholar 

  • Peterseim JH, White S, Tadros A, Hellwig U (2013) Concentrated solar power hybrid plants, which technologies are best suited for hybridisation? Renew Energy 57:520–532

    Article  Google Scholar 

  • Peterseim JH, Hellwig U, Tadros A, White S (2014) Hybridisation optimization of concentrating solar thermal and biomass power generation facilities. Sol Energy 99:203–214

    Article  Google Scholar 

  • Pikra G, Salim A, Prawara B, Purwanto AJ, Admono T, Eddy Z (2013) Development of small scale concentrated solar power plant using organic Rankine cycle for isolated region in Indonesia. Energy Procedia 32:122–128

    Article  Google Scholar 

  • Powell KM, Edgar TF (2012) Modeling and control of a solar thermal power plant with thermal energy storage. Chem Eng Sci 71:138–145

    Article  CAS  Google Scholar 

  • Purohit I, Purohit P, Shekhar S (2013) Evaluating the potential of concentrating solar power generation in Northwestern India. Energy Policy 62:157–175

    Article  Google Scholar 

  • Py X, Azoumah Y, Olives R (2013) Concentrated solar power: current technologies, major innovative issues and applicability to West African countries. Renew Sustain Energy Rev 18:306–315

    Article  Google Scholar 

  • Qiu G, Liu H, Riffat S (2011) Expanders for micro-CHP systems with organic Rankine cycle. Appl Therm Eng 31:3301–3307

    Article  CAS  Google Scholar 

  • Qiu Y, He Y-L, Cheng Z-D, Wang K (2015) Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods. Appl Energy 146:162–173

    Article  Google Scholar 

  • Quaschning V, Kistner R, Ortmanns W (2002) Influence of direct normal irradiance variation on the optimal parabolic trough field size: a problem solved with technical and economical simulations. J Sol Energy Eng 124:160–164

    Article  Google Scholar 

  • Quoilin S, Orosz M, Hemond H, Lemort V (2011) Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Sol Energy 85:955–966

    Article  Google Scholar 

  • Ramaswamy MA, Rao B, Thirumalai NC, Suresh NS (2013) Estimation of hourly direct normal irradiance (DNI) for 22 stations in India. Center for Study of Science, Technology and Policy, Bangalore

    Google Scholar 

  • Rayegan R, Tao YX (2011) A procedure to select working fluids for solar organic Rankine cycles (ORCs). Renew Energy 36:659–670

    Article  CAS  Google Scholar 

  • Reddy KS, Kumar KR (2014) Estimation of convective and radiative heat losses from an inverted trapezoidal cavity receiver of solar linear Fresnel reflector system. Int J Therm Sci 80:48–57

    Article  Google Scholar 

  • Reddy VS, Kaushik SC, Tyagi SK (2012) Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP). Energy 39:258–273

    Article  Google Scholar 

  • Reddy VS, Kaushik SC, Tyagi SK (2013) Exergetic analysis of solar concentrator aided coal fired super critical thermal power plant (SACSCTPT). Clean Technol Environ Policy 15:133–145

    Article  Google Scholar 

  • Rinaldi F, Binotti M, Giostri A, Manzolini G (2014) Comparison of linear and point focus collectors in solar power plants. Energy Procedia 49:1491–1500

    Article  Google Scholar 

  • Roget F, Favotto C, Rogez J (2013) Study of the KNO3–LiNO3 and KNO3–NaNO3–LiNO3 eutectics as phase change materials for thermal storage in a low-temperature solar power plant. Sol Energy 95:155–169

    Article  CAS  Google Scholar 

  • Rovira A, Barbero R, Montes MJ, Abbas R, Varela F (2016) Analysis and comparison of integrated solar combined cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems. Appl Energy 162:990–1000

    Article  Google Scholar 

  • Sahoo SS, Varghese SM, Suresh Kumar C, Viswanathan SP, Singh S, Banerjee R (2013a) Experimental investigation and computational validation of heat losses from the cavity receiver used in linear Fresnel reflector solar thermal system. Renew Energy 55:18–23

    Article  Google Scholar 

  • Sahoo SS, Singh S, Banerjee R (2013b) Steady state hydrothermal analysis of the absorber tubes used in linear Fresnel reflector solar thermal system. Sol Energy 87:84–95

    Article  Google Scholar 

  • Sahoo SS, Singh S, Banerjee R (2016) Thermal hydraulic simulation of absorber tubes in linear Fresnel reflector solar thermal system using RELAP. Renew Energy 86:507–516

    Article  Google Scholar 

  • Sait HH, Martínez-Val JM, Abbas R, Munoz-Anton J (2015) Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: a comparison with parabolic trough collectors. Appl Energy 141:175–189

    Article  Google Scholar 

  • Schenk H, Hirsch T, Feldhoff JF, Wittmann M (2014) Energetic comparison of linear Fresnel and parabolic trough collector systems. J Sol Energy Eng 136:041015

    Article  Google Scholar 

  • Sharma VM, Nayak JK, Kedare SB (2013) Shading and available energy in a parabolic trough concentrator field. Sol Energy 90:144–153

    Article  Google Scholar 

  • Sharma V, Nayak JK, Kedare SB (2015a) Comparison of line focusing solar concentrator fields considering shading and blocking. Sol Energy 122:924–939

    Article  Google Scholar 

  • Sharma V, Nayak JK, Kedare SB (2015b) Effects of shading and blocking in linear Fresnel reflector field. Sol Energy 113:114–138

    Article  Google Scholar 

  • Sharma C, Sharma AK, Mullick SC, Kandpal TC (2016) A study of the effect of design parameters on the performance of linear solar concentrator based thermal power plants in India. Renew Energy 87:666–675

    Article  Google Scholar 

  • Singh P, Ganesan S, Yadav G (1999) Technical note: performance study of a linear Fresnel concentrating solar device. Renew Energy 18(3):409–416

    Article  Google Scholar 

  • Singh P, Sarviya R, Bhagoria J (2010) Heat loss study of trapezoidal cavity absorbers for linear solar concentrating collector. Energy Convers Manag 51(2):329–337

    Article  Google Scholar 

  • Solar Energy Laboratory (2010) TRNSYS, a transient simulation program. University of Wisconsin, Madison

    Google Scholar 

  • Sootha GD, Negi BS (1994) A comparative study of optical designs and solar flux concentrating characteristics of a linear Fresnel reflector solar concentrator with tubular absorber. Solar Energy Mater Solar Cells 32:169–186

    Article  Google Scholar 

  • Stijepovic MZ, Linke P, Papadopoulos AI, Grujic AS (2012) On the role of working fluid properties in organic Rankine cycle performance. Appl Therm Eng 36:406–413

    Article  CAS  Google Scholar 

  • Stine WB, Harrigan RW (1985) Solar energy fundamentals and design with computer applications. Wiley, New York

    Google Scholar 

  • Sun F, Ikegami Y, Jia B (2012) A study on Kalina solar system with an auxiliary superheater. Renew Energy 41:210–219

    Article  Google Scholar 

  • Sundaray S, Kandpal TC (2013) Preliminary feasibility evaluation of solar thermal power generation in India. Int J Sustain Energy 33(2):461–469

    Article  Google Scholar 

  • Suresh NS, Thirumalai NC, Rao BS, Ramaswamy MA (2014) Methodology for sizing the solar field for parabolic trough technology with thermal storage and hybridization. Sol Energy 110:247–259

    Article  Google Scholar 

  • Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G (2011) Low-grade heat conversion into power using organic Rankine cycles—a review of various applications. Renew Sustain Energy Rev 15:3963–3979

    Article  CAS  Google Scholar 

  • Thermoflow Inc. (2009) THERMOFLEX user manual, version 19

  • Tian Y, Zhao CY (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553

    Article  CAS  Google Scholar 

  • US DOE (2014) EnergyPlus energy simulation software, energy efficiency and renewable energy, U.S. Department of Energy, Washington, D.C. www.energyplus.net/weather. Accessed 14 May 2014

  • Velázquez N, García-Valladares O, Sauceda D, Beltrán R (2010) Numerical simulation of a linear Fresnel reflector concentrator used as direct generator in a solar-GAX cycle. Energy Convers Manag 51:434–445

    Article  CAS  Google Scholar 

  • Vélez F, Segovia JJ, Martín MC, Antolín G, Chejne F, Quijano A (2012) A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renew Sustain Energy Rev 16:4175–4189

    Article  Google Scholar 

  • Vignarooban K, Xu X, Arvay A, Hsu K, Kannan AM (2015) Heat transfer fluids for concentrating solar power systems—a review. Appl Energy 146:383–396

    Article  CAS  Google Scholar 

  • Wang J, Yan Z, Zhou E, Dai Y (2013) Parametric analysis and optimization of a Kalina cycle driven by solar energy. Appl Therm Eng 50(1):408–415

    Article  CAS  Google Scholar 

  • Xie WT, Dai YJ, Wang RZ (2012) Theoretical and experimental analysis on efficiency factors and heat removal factors of Fresnel lens solar collector using different cavity receivers. Sol Energy 86:2458–2471

    Article  Google Scholar 

  • Xu L, Wang Z, Li X, Yuan G, Sun F, Lei D (2013) Dynamic test model for the transient thermal performance of parabolic trough solar collectors. Sol Energy 95:65–78

    Article  Google Scholar 

  • Xu C, Chen Z, Li M, Zhang P, Ji X, Luo X, Liu J (2014) Research on the compensation of the end loss effect for parabolic trough solar collectors. Appl Energy 115:128–139

    Article  Google Scholar 

  • Xu B, Li P, Chan C (2015a) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 160:286–307

    Article  Google Scholar 

  • Xu G, Song G, Zhu X, Gao W, Li H, Quan Y (2015b) Performance evaluation of a direct vapor generation supercritical ORC system driven by linear Fresnel reflector solar concentrator. Appl Therm Eng 80:196–204

    Article  Google Scholar 

  • Yang Z, Garimella SV (2013) Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants. Appl Energy 103:256–265

    Article  Google Scholar 

  • Yilmazoglu MZ (2016) Effects of the selection of heat transfer fluid and condenser type on the performance of a solar thermal power plant with technoeconomic approach. Energy Convers Manag 111:271–278

    Article  Google Scholar 

  • Zarza E, Valenzuela L, León J, Weyers H-D, Eickhoff M, Eck M, Hennecke K (2002) The DISS project: direct steam generation in parabolic trough systems. Operation and maintenance experience and update on project status. J Sol Energy Eng 124:126–133

    Article  Google Scholar 

  • Zaversky F, Medina R, García-Barberena J, Sánchez M, Astrain D (2013) Object-oriented modeling for the transient performance simulation of parabolic trough collectors using molten salt as heat transfer fluid. Sol Energy 95:192–215

    Article  CAS  Google Scholar 

  • Zhang HL, Baeyens J, Degrève J, Cacères G (2013a) Concentrated solar power plants: review and design methodology. Renew Sustain Energy Rev 22:466–481

    Article  Google Scholar 

  • Zhang L, Yu Z, Fan L, Wang W, Chen H, Hu Y, Fan J, Ni M, Cen K (2013b) An experimental investigation of the heat losses of a U-type solar heat pipe receiver of a parabolic trough collector-based natural circulation steam generation system. Renew Energy 57:262–268

    Article  Google Scholar 

  • Zhou W, Lou C, Li Z, Lu L, Yang H (2010) Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems. Appl Energy 87:380–389

    Article  Google Scholar 

  • Zhu G (2013) Development of an analytical optical method for linear Fresnel collectors. Sol Energy 94:240–252

    Article  Google Scholar 

  • Zhu G, Wendelin T, Wagner MJ, Kutscher C (2014) History, current state, and future of linear Fresnel concentrating solar collectors. Sol Energy 103:639–652

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, N.B., Bandyopadhyay, S. Line-focusing concentrating solar collector-based power plants: a review. Clean Techn Environ Policy 19, 9–35 (2017). https://doi.org/10.1007/s10098-016-1238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1238-4

Keywords

Navigation