Skip to main content

Advertisement

Log in

Pyrolysis of Sedum plumbizincicola, a zinc and cadmium hyperaccumulator: pyrolysis kinetics, heavy metal behaviour and bio-oil production

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Appropriate disposal of hyperaccumulator biomass is a problem inhibiting the widespread use of phytoremediation technology. In the present study, kinetic analysis of the pyrolysis process of Sedum plumbizincicola, the behaviour of heavy metals and bio-oil composition were studied. The kinetic analysis of the pyrolysis process shows that activation energy (E) changed from 150 to 186 kJ mol−1 and the frequency factor (A) changed from 1.34 × 1011 to 8.99 × 1015 s−1. At temperatures of 450–750 °C more than 66.3 % of zinc (Zn) remained in the char. More than 87.6 % of the cadmium (Cd) was found in the bio-oil. Pyrolysis at 650 °C led to the highest yield of alkanes with low-oxygen compounds found in the bio-oil. Pyrolysis at 650 °C can likely offer a valuable processing method for S. plumbizincicola and recovery of Zn from the char and recovery of Cd from the bio-oil will be attempted in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alper K, Tekin K, Karagoz S (2015) Pyrolysis of agricultural residues for bio-oil production. Clean Technol Environ Policy 17(1):211–223

    Article  CAS  Google Scholar 

  • Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M (2014) Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 128:162–169

    Article  CAS  Google Scholar 

  • Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277(1):1–18

    Article  CAS  Google Scholar 

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  • Bulushev DA, Ross JRH (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal Today 171(1):1–13

    Article  CAS  Google Scholar 

  • Cheng CC (2014) Effects of municipal sludge and wheat straw pyrolysis on changes of shapes of heavy metals. Asian J Chem 26(1):21–24

    CAS  Google Scholar 

  • Cheng ZC, Wu WX, Ji P, Zhou XT, Liu RH, Cai JM (2015) Applicability of Fraser-Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes. J Therm Anal Calorim 119(2):1429–1438

    Article  CAS  Google Scholar 

  • Chouchene A, Jeguirim M, Trouve G (2014) Biosorption performance, combustion behavior, and leaching characteristics of olive solid waste during the removal of copper and nickel from aqueous solutions. Clean Technol Environ Policy 16(5):979–986

    Article  CAS  Google Scholar 

  • Elliott DC (1986) Analysis and comparison of biomass pyrolysis/gasification condensates: Final report. Other Information: portions of this document are illegible in microfiche products. Original copy available until stock is exhausted: Medium: ED; Size, 100

  • Fahmi R, Bridgwater A, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87(7):1230–1240

    Article  CAS  Google Scholar 

  • Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C (2007) Characterization of bio-oils in chemical families. Biomass Bioenergy 31(4):222–242

    Article  CAS  Google Scholar 

  • Giuntoli J, Arvelakis S, Spliethoff H, de Jong W, Verkooijen AHM (2009) Quantitative and Kinetic Thermogravimetric Fourier Transform Infrared (TG-FTIR) study of pyrolysis of agricultural residues: influence of different pretreatments. Energy Fuels 23:5695–5706

    Article  CAS  Google Scholar 

  • Han YX, Boateng AA, Qi PX, Lima IM, Chang JM (2013) Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J Environ Manag 118:196–204

    Article  CAS  Google Scholar 

  • Jones KC (1991) Contaminant trends in soils and crops. Environ Pollut 69(4):311–325

    Article  CAS  Google Scholar 

  • Keller C, Ludwig C, Davoli F, Wochele J (2005) Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environ Sci Technol 39(9):3359–3367

    Article  CAS  Google Scholar 

  • Koppolu L, Prasad R, Clements LD (2004) Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part III: pilot-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass Bioenergy 26(5):463–472

    Article  CAS  Google Scholar 

  • Lewandowski I, Schmidt U, Londo M, Faaij A (2006) The economic value of the phytoremediation function: Assessed by the example of cadmium remediation by willow (Salix ssp). Agric Syst 89(1):68–89

    Article  Google Scholar 

  • Li LL, Wang G, Wang SY, Qin S (2013) Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using the distributed activation energy model. J Therm Anal Calorim 114(3):1183–1189

    Article  CAS  Google Scholar 

  • Lievens C, Carleer R, Cornelissen T, Yperman J (2009) Fast pyrolysis of heavy metal contaminated willow: influence of the plant part. Fuel 88(8):1417–1425

    Article  CAS  Google Scholar 

  • Lieves C, Yperman J, Vangronsveld J, Carleer R (2008) Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals. Fuel 87(10–11):1894–1905

    Article  Google Scholar 

  • Liu J, Falcoz Q, Gauthier D, Flamant G, Zheng CZ (2010) Volatilization behavior of Cd and Zn based on continuous emission measurement of flue gas from laboratory-scale coal combustion. Chemosphere 80(3):241–247

    Article  CAS  Google Scholar 

  • Lu Q, Dong C-Q, Zhang X-M, Tian H-Y, Yang Y-P, Zhu X-F (2011a) Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: analytical Py-GC/MS study. J Anal Appl Pyrol 90(2):204–212

    Article  CAS  Google Scholar 

  • Lu Q, Wang Z, Dong C-Q, Zhang Z-F, Zhang Y, Yang Y-P, Zhu X-F (2011b) Selective fast pyrolysis of biomass impregnated with ZnCl2: furfural production together with acetic acid and activated carbon as by-products. J Anal Appl Pyrol 91(1):273–279

    Article  CAS  Google Scholar 

  • Miura K (1995) A new and simple method to estimate f(E) and K(0)(E) in the distributed activation-energy model from 3 sets of experimental-data. Energy Fuels 9(2):302–307

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889

    Article  CAS  Google Scholar 

  • Qiang L, Xu-Lai Y, Xi-Feng Z (2008) Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J Anal Appl Pyrol 82(2):191–198

    Article  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mole Biol 49:643–668

    Article  CAS  Google Scholar 

  • Shafizad F, McGinnis GD, Philpot CW (1972) Thermal-degradation of xylan and related model compounds. Carbohydr Res 25(1):23–33

    Article  Google Scholar 

  • Shen DK, Gu S, Jin BS, Fang MX (2011) Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresour Technol 102(2):2047–2052

    Article  CAS  Google Scholar 

  • Stals M, Thijssen E, Vangronsveld J, Carleer R, Schreurs S, Yperman J (2010) Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. J Anal Appl Pyrol 87(1):1–7

    Article  CAS  Google Scholar 

  • Stelmachowski M (2011) Utilization of glycerol, a by-product of the transestrification process of vegetable oils: a review. Ecol Chem Eng S-Chemia I Inzynieria Ekologiczna S 18(1):9–30

    CAS  Google Scholar 

  • Sun LS, Abanades S, Lu JD, Flamant G, Gauthier D (2004) Volatilization of heavy metals during incineration of municipal solid wastes. J Environ Sciences-China 16(4):635–639

    CAS  Google Scholar 

  • Wang G, Li W, Li BQ, Chen HK (2008) TG study on pyrolysis of biomass and its three components under syngas. Fuel 87(4–5):552–558

    Article  CAS  Google Scholar 

  • Weres O, Newton AS, Tsao L (1988) Hydrous pyrolysis of alkanes, alkenes, alcohols and ethers. Org Geochem 12(5):433–444

    Article  CAS  Google Scholar 

  • Wu LH, Liu YJ, Zhou SB, Guo FG, Bi D, Guo XH, Baker AJM, Smith JAC, Luo YM (2013) Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu (Crassulaceae): a new species from Zhejiang Province, China. Plant Syst Evol 299(3):487–498

    Article  Google Scholar 

  • Xue Y, Zhou S, Brown RC, Kelkar A, Bai XL (2015) Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel 156:40–46

    Article  CAS  Google Scholar 

  • Yang FS, Zhang M, Zhou AN, Lin MQ, Wei BL (2014) Research on immobilization of heavy metals in sludge by pyrolysis. Environ Eng, Pts 1–4. Li l, Xu Q, Ge H, Stafa-Zurich, Trans Tech Publications Ltd. 864–867: 1745–1749

  • Zhong DX, Zhong ZP, Wu LH, Xue H, Song ZW, Luo YM (2015) Thermal characteristics and fate of heavy metals during thermal treatment of Sedum plumbizincicola, a zinc and cadmium hyperaccumulator. Fuel Process Technol 131:125–132

    Article  CAS  Google Scholar 

  • Zhou D, Zhang LA, Zhang SC, Fu HB, Chen JM (2010) Hydrothermal Liquefaction of Macroalgae Enteromorpha prolifera to Bio-oil. Energy Fuels 24:4054–4061

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (41325003, 51276040 and U1361115) and the National High Technology Research and Development (863) Program of China (2012AA101402-2) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoping Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, D., Zhong, Z., Wu, L. et al. Pyrolysis of Sedum plumbizincicola, a zinc and cadmium hyperaccumulator: pyrolysis kinetics, heavy metal behaviour and bio-oil production. Clean Techn Environ Policy 18, 2315–2323 (2016). https://doi.org/10.1007/s10098-016-1150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1150-y

Keywords

Navigation