Skip to main content

Advertisement

Log in

How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Plants are autotrophic organisms which are able to use sunlight and carbon dioxide as the sources of energy and carbon. Plants’ roots absorb a range of natural and anthropogenic toxic compounds for which they have developed some extraordinary detoxification mechanisms. From this point of view, plants can be seen as natural, solar-powered pump-and-treat systems for cleaning up contaminated soils, leading further to the concept of phytoremediation. The phytoremediation of polycyclic aromatic hydrocarbons (PAHs) refers to the use of plants and associated soil microorganisms in terms of reducing the concentrations or toxic effects of these contaminants in the environment. Although there is little evidence to prove that PAHs from soils are accumulated considerably in plants’ parts, there is a lot of evidence that in soils vegetated with grasses and legumes, a significant dissipation of PAHs occurs. Namely, the primary mechanism controlling this process is the rhizospheric microbial degradation, where soil microbial populations use organic compounds as carbon substrates for its growth. This is usually stimulated by roots exudates. The final result of this process is the breakdown and eventual total mineralization of the contaminants. The main challenge in PAH phytoremediation is to improve the performances of plants and rhizospheric microorganisms requiring thus more basic research and knowledge on natural detoxification mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMPR:

Arbuscular mycorrhizal phytoremediation

BCF:

Bioconcentration factor

DNA:

Deoxyribonucleic acid

HMW:

High molecular weight

LMW:

Low molecular weight

MMW:

Medium molecular weight

PAHs:

Polycyclic aromatic hydrocarbons

PGPR:

Plant growth promoting rhizobacteria

PM:

Particulate matter

RCF:

Root concentration factor

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SCF:

Shoot concentration factor

SOM:

Soil organic matter

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  Google Scholar 

  • Alagić ČS, Maluckov SB, Riznić TD (2013a) Phytoremediation as an environmental friendly method for POPs removal from contaminated soils. In: International Scientific conference on impact of climate change on the environment and the economy, Belgrade, April, 22–24, Book of Abstracts, p. 218

  • Alagić ČS, Šerbula SS, Tošić BS, Pavlović NA, Petrović VJ (2013b) Bioaccumulation of Arsenic and Cadmium in Birch and Lime from the Bor Region. Arch Environ Contam Toxicol 65(4):671–682

    Article  Google Scholar 

  • Alkio M, Tabuchi TM, Wang X, Colon-Carmona A (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J Exp Bot 56(421):2983–2994

    Article  CAS  Google Scholar 

  • ATSDR (1995) Toxicology profile for polycyclic aromatic hydrocarbons. US Department of Health and Human Services. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=122&tid=25. Accessed 22 August 2014

  • Binet P, Portal JM, Leyval C (2000) Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol Biochem 32:2011–2017

    Article  CAS  Google Scholar 

  • Bogolte BT, Ehlers GAC, Braun R, Loibner AP (2007) Estimation of PAH bioavailability to Lepidium sativum using sequential supercritical fluid extraction: a case study with industrial contaminated soils. Eur J Soil Biol 43:242–250

    Article  CAS  Google Scholar 

  • Boll ES, Christensen JH, Holm PE (2008) Quantification and source identification of polycyclic aromatic hydrocarbons in sediment, soil, and water spinach from Hanoi, Vietnam. J Environ Monitor 10:261–269

    Article  CAS  Google Scholar 

  • Bonilla SH, Almeida CMVB, Giannetti BF, Huisingh D (2010) The roles of cleaner production in the sustainable development of modern societies: an introduction to this special issue. J Clean Prod 18(1):1–5

    Article  Google Scholar 

  • Boström CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T et al (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(3):451–488

    Article  Google Scholar 

  • Brady CAL, Gill RA, Lynch PT (2003) Preliminary evidence for the metabolism of benzo(a)pyrene by Plantago lanceolata. Environ Geochem Health 25:131–137

    Article  CAS  Google Scholar 

  • Caliman FA, Robu BM, Smaranda C, Pavel VL, Gavrilescu M (2011) Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Technol Environ Policy 13:241–268

    Article  Google Scholar 

  • Campos VM, Merino I, Casado R, Pacios LF, Gómez L (2008) Review: phytoremediation of organic pollutants. Span J Agric Res 6 (Special issue):38–47

  • Chen YC, Banks MK, Scwab AP (2003) Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and Switchgrass (Panicum virgatum L.). Environ Sci Technol 37:5778–5782

    Article  CAS  Google Scholar 

  • Cofield N, Schwab AP, Williams P, Banks MK (2007) Phytoremediation of polycyclic hydrocarbon contaminated soil: Part II. Impact on ecotoxicity. Int J Phytoremediat 9:371–384

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    CAS  Google Scholar 

  • de Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189

    Article  Google Scholar 

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    Article  CAS  Google Scholar 

  • Gao Y, Zhu L (2004) Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55:1169–1178

    Article  CAS  Google Scholar 

  • Gao Y, Li Q, Ling W, Zhu X (2011) Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. J Hazard Mater 185:703–709

    Article  CAS  Google Scholar 

  • Gao Y, Zhang Y, Liu J, Kong H (2013) Metabolism and subcellular distribution of anthracene in tall fescue (Festuca arundinacea Schreb.). Plant Soil 365:171–182

    Article  CAS  Google Scholar 

  • Gartler J, Wimmer B, Soja G, Reichenauer TG (2014) Effects of rapeseed oil on the rhizodegradation of polyaromatic hydrocarbons in contaminated soil. Int J Phytoremediat 16(7–8):671–683. doi:10.1080/15226514.2013.856841

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Huang X-D, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  CAS  Google Scholar 

  • Johnson DL, Anderson DR, McGratha SP (2005) Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol Biochem 37:2334–2336

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (2001) Influence of Arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza 10:155–159

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C, Colpaert JV (2006) Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ Pollut 142:34–38

    Article  CAS  Google Scholar 

  • Kanaly RA, Shigeaki H (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067

    Article  CAS  Google Scholar 

  • Kang F, Chen D, Gao Y, Zhang Y (2010) Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC Plant Biol 10:210

    Article  Google Scholar 

  • King RF, Royle A, Putwain PD, Dickinson NM (2006) Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial. Environ Pollut 143:318–326

    Article  CAS  Google Scholar 

  • Kipopoulou AM, Manoli E, Samara C (1999) Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ Pollut 106:369–380

    Article  CAS  Google Scholar 

  • Kvesitadze E, Sadunishvili T, Kvesitadze G (2009) Mechanisms of organic contaminants uptake and degradation in plants. Proc World Acad Sci Eng Technol 55:458–468

  • LID (2005) Low impact development: technical guidance manual for puget sound. http://www.psp.wa.gov/downloads/LID/LID_manual2005.pdf. Accessed 22 August 2014

  • Lozano R, Huisingh D (2011) Inter-linking issues and dimensions in sustainability reporting. J Clean Prod 19:99–107

    Article  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  Google Scholar 

  • Mahanty B, Pakshirajan K, Venkata Dasu V (2010) Batch biodegradation of PAHs in mixture by Mycobacterium frederiksbergense: analysis of main and interaction effects. Clean Technol Environ Policy 12:441–447

    Article  CAS  Google Scholar 

  • Maric M, Antonijevic M, Alagic S (2013) The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil. Environ Sci Pollut Res 20(2):1181–1188

    Article  CAS  Google Scholar 

  • Newman L (2011) Phytoremediation and urban gardening: public health implications of community involvement. In: International conference on sustainable remediation: state of the practice, University of Massachusetts, Amherst, June 1–3. http://www.chemistryviews.org/details/event/1069921/International_Conference_Sustainable_Remediation_2011_State_of_the_Practice.html. Accessed 30 January 2014

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  Google Scholar 

  • Parrish DZ, Banks MK, Schwab AP (2004) Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytoremediat 6(2):119–137

    Article  CAS  Google Scholar 

  • Prasad MNV (2007) Aquatic plants for phytotechnology. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, pp 259–274

    Chapter  Google Scholar 

  • Reichenauer TG, Germida JJ (2008) Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem 1:708–717

    Article  CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments - a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    Article  CAS  Google Scholar 

  • Rodríguez Dorantes A, Guerrero Zúñiga LA (2012) Phenoloxidases activity in root system and their importance in the phytoremediation of organic contaminants. J Environ Chem Ecotoxicol 4(3):35–40

    Google Scholar 

  • Rubin E, Burhan Y (2006) Noncombustion technologies for remediation of persistent organic pollutants in stockpiles and soil. Rem J 16(4):23–42

    Article  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of 23. Environ Sci Technol 29(7):318A–323A

    Article  CAS  Google Scholar 

  • Simon JA, Sobieraj JA (2006) Contributions of common sources of polycyclic aromatic hydrocarbons to soil contamination. Rem J 16(3):25–35

    Article  Google Scholar 

  • Simonich SL, Hites RA (1994) Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 28:939–943

    Article  CAS  Google Scholar 

  • Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biot 63:128–135

    Article  CAS  Google Scholar 

  • Somtrakoon K, Chouychai W, Lee H (2014) Comparing anthracene and fluorene degradation in anthracene and fluorene-contaminated soil by single and mixed plant cultivation. Int J Phytoremediat 16:415–428. doi:10.1080/15226514.2013.803024

    Article  CAS  Google Scholar 

  • Song H, Wang YS, Sun CC, Wang YT, Peng YL, Cheng H (2012) Effects of pyrene on antioxidant systems and lipid peroxidation level in mangrove plants, Bruguiera gymnorrhiza. Ecotoxicology 21(6):1625–1632

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Tao S, Cui YH, Xu FL, Li BG, Cao J, Liu WX et al (2004) Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci Total Environ 320:11–24

    Article  CAS  Google Scholar 

  • Tao S, Jiao XC, Chen SH, Liu WX, Coveney RM Jr, Zhu LZ, Luo YM (2006) Accumulation and distribution of polycyclic aromatic hydrocarbons in rice (Oryza sativa). Environ Pollut 140:406–415

    Article  CAS  Google Scholar 

  • Techer D, D’Innocenzo M, Laval-Gilly P, Henry S, Bennasroune A, Martinez-Chois C, Falla J (2012) Assessment of Miscanthus × giganteus secondary root metabolites for the biostimulation of PAH-utilizing soil bacteria. Appl Soil Ecol 62:142–146

    Article  Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT, Tripathi RD (2013) Trichoderma: a potential bioremediator for environmental clean up. Clean Technol Environ Policy 15:541–550

    Article  CAS  Google Scholar 

  • van Bohemen HD, van de Laak WHJ (2003) The influence of road infrastructure and traffic on soil, water, and air quality. Environ Manage 31(1):50–68

    Article  Google Scholar 

  • Venkata Mohan S, Kisa T, Ohkuma T, Kanaly AR, Shimizu Y (2006) Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol 5(4):347–374

    Article  Google Scholar 

  • Wen Y, Ehsan S, Marshall WD (2012) Simultaneous mobilization of macro- and trace elements (MTEs) and polycyclic aromatic hydrocarbon (PAH) compounds from soil with a nonionic surfactant and [S, S]-ethylenediaminedisuccinic acid (EDDS) in admixture: PAH compounds. J Hazard Mater 199–200:240–246

    Article  Google Scholar 

  • Witters N, Mendelsohn R, Van Passel S, Van Slycken S, Weyens N, Schreurs E, Meers E, Tack F, Vanheusden B, Vangronsveld J (2012) Phytoremediation, a sustainable remediation technology? II: economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production. Biomass Bioenerg 39:470–477

    Article  CAS  Google Scholar 

  • Yap CL, Gan S, Ng HK (2010) Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils. J Hazard Mater 177:28–41

    Article  CAS  Google Scholar 

  • Yi H, Crowley DE (2007) Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ Sci Technol 41:4382–4388

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Ministry of Education, Science and Technology Development of Republic of Serbia, for their support (Project No. 46010). Authors are grateful to Radisavljević Danica, who supported language translation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slađana Č. Alagić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alagić, S.Č., Maluckov, B.S. & Radojičić, V.B. How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Techn Environ Policy 17, 597–614 (2015). https://doi.org/10.1007/s10098-014-0840-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0840-6

Keywords

Navigation