Skip to main content

Advertisement

Log in

Financial analysis for investment and policy decisions in the renewable energy sector

  • Original paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The management and exploitation of renewable energy sources is now recognised as central to sustainable development. Environmental concerns, recurring oil crises and market weaknesses, combined with the availability of power from natural resources and resulting possibilities for job creation and energy independence, have all pushed developed and developing countries towards new energy strategies that include RES. This paper analyses the profitability of potential investments in small, medium and large RE electrical power facilities, applying a Net Present Value (NPV) methodology. The proposed financial analysis permits strategic selection of an energy portfolio from among available sources and plant sizes. The paper then discusses potential constraints, and where possible applies the NPV methodology for estimating the necessary changes in decision-making. It defines the role of government incentive schemes in the financial results and evaluates the impact of variation in critical variables (subsidies, sale price of electricity, investment cost, operating cost and equivalent operating hours) on the estimation of NPV. Finally, the paper analyses the environmental impact of all the energy sources examined, examines the links with the financial results and proposes socio-economic policy considerations based on the entirety of the research results. While the methodology is applied to the Italian case, it could be modified to serve in other nations by adapting the input parameters to reflect the different regulatory and market contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AiFiT :

All-inclusive feed-in tariff for energy from Bi,Hy,Wi (€/kWh)

Bi :

Biomass source

Capex :

Total capital expenditure (€)

capex U :

Net capital expenditure per kW (€/kW)

C in :

Capacity of the installed facility (kW)

dE f :

Annual decrease in plant efficiency (%)

DT (PV) :

State duties on Net metered revenue from PV (€)

DT (Bi,Hy,Wi) :

State duties on Net metered revenue from Bi,Hy,Wi (€)

DT U :

Unit duty for Net metered kW (%)

E f :

Embodied energy by RE facility (kWh)

FiP CE :

Premium Feed-in Tariff per kW from PV (€)

FiP PV :

Total Premium Feed-in Tariff for PV(€)

FiT (Bi,Hy,Wi) :

Feed-in tariff for Bi, Hy, Wi (€)

h eq :

Equivalent hours of operation (h)

Hy :

Hydro source

Inf :

Inflation rate (%)

inf el :

Energy inflation rate (%)

K :

Constant for Green Certificate

L CS :

Loan capital share (%)

L IS :

Loan interest share (%)

N R :

Time for plant construction (years)

opex :

Total operating expenditure (€)

opex U :

Operating expenditure per kW (€/kW)

p GC :

Price of Green Certificate (€/kWh)

PV :

Photovoltaic source

r :

Opportunity cost (%)

SP el (Bi,Hy,Wi) :

Sales of electricity from Bi, Hy, Wi (€)

SP el (PV) :

Sales of electricity from PV (€)

SPu el :

Sale price per kWh of electrical energy (€/kWh)

Wi :

Wind source

References

  • Arent D, Plessa J, Mai T, Wiser R, Hand M, Baldwin S, Heath G, Macknick J, Bazilian M, Schlosser A, Denholm P (2014) Implications of high renewable electricity penetration in the US for water use, greenhouse gas emissions, land-use, and materials supply. Applied Energy 123:368–377. doi:10.1016/j.apenergy.2013.12.022

    Article  Google Scholar 

  • Ascough JC, Maier HR, Ravalico JK, Strudley MW (2008) Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecol Model 219:383–399. doi:10.1016/j.ecolmodel.2008.07.015

    Article  Google Scholar 

  • Bader H-P, Scheidegger R, Real M (2005) Global renewable energies: a dynamic study of implementation time, greenhouse gas emissions and financial needs. Clean Technol Environ Policy 8:159–173. doi:10.1007/s10098-005-0015-6

    Article  Google Scholar 

  • Banal-Estañol A, Micola AR (2009) Composition of electricity generation portfolios pivotal dynamics, and market prices. Manage Sci 55:1813–1831. doi:10.1287/mnsc.1090.1067

    Article  Google Scholar 

  • Barnham K, Knorr K, Mazzer M (2013) Benefits of photovoltaic power in supplying national electricity demand. Energy Policy 54:385–390. doi:10.1016/j.enpol.2012.10.077

    Article  Google Scholar 

  • Cansino JM, Pablo-Romero MdP, Roman R, Yniguez R (2010) Tax incentives to promote green electricity: An overview of EU-27 countries. Energy Policy 38:6000–6008

    Article  Google Scholar 

  • Chatzimouratidis AI, Pilavachi PA (2009) Sensitivity analysis of technological, economic and sustainability evaluation of power plants using the analytic hierarchy process. Energy Policy 37:788–798. doi:10.1016/j.enpol.2008.11.021

    Article  Google Scholar 

  • Chen Y-T, Chang D-S, Chen C-Y, Chen C-C (2011) The policy impact on clean technology diffusion. Clean Technol Environ Policy 14:699–708. doi:10.1007/s10098-011-0435-4

    Article  Google Scholar 

  • Cucchiella F, D’Adamo I (2012a) Feasibility study of developing photovoltaic power projects in Italy: an integrated approach. Renew Sustain Energy Rev 16:1562–1576. doi:10.1016/j.rser.2011.11.020

    Article  Google Scholar 

  • Cucchiella F, D’Adamo I (2012b) Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems. Renew Sustain Energy Rev 16:5245–5259. doi:10.1016/j.rser.2012.04.034

    Article  Google Scholar 

  • Cucchiella F, D’Adamo I (2013) Issue on supply chain of renewable energy. Energy Convers Manag 76:774–780. doi:10.1016/j.enconman.2013.07.081

    Article  Google Scholar 

  • Cucchiella F, D’Adamo I, Gastaldi M (2012) Modeling optimal investments with portfolio analysis in electricity markets energy education science and technology part A. Energy Sci Res 30:673–692

    Google Scholar 

  • Cucchiella F, D’Adamo I, Gastaldi M (2013a) A multi-objective optimization strategy for energy plants in Italy. Sci Total Environ 443:955–964. doi:10.1016/j.scitotenv.2012.11.008

    Article  CAS  Google Scholar 

  • Cucchiella F, D’Adamo I, Lenny Koh SC (2013b) Environmental and economic analysis of building integrated photovoltaic systems in Italian regions. J Clean Prod doi:10.1016/j.jclepro.2013.10.043

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev: Clim Change 2:45–65

    Google Scholar 

  • Department of Energy and Climate Change (2011) Review of the generation costs and deployment potential of renewable electricity technologies in the UK available at decc.gov.uk

  • Edenhofer O, Pichs Madruga R, Sokona Y (eds.) (2012) Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. Cambridge University Press,Cambridge

  • Fokaides P, Miltiadous I-C, Neophytou MA, Spyridou L-P (2014) Promotion of wind energy in isolated energy systems: the case of the Orites wind farm. Clean Technol Environ Policy 16:477–488. doi:10.1007/s10098-013-0642-2

    Article  Google Scholar 

  • Golusin M, Ostojic A, Latinovic S, Jandric M, Munitlak Ivanovic O (2012) Review of the economic viability of investing and exploiting biogas electricity plant—Case study Vizelj, Serbia. Renew Sustain Energy Reviews 16:1127–1134

    Article  Google Scholar 

  • Hand M, Baldwin S, DeMeo E, Reilly J, Mai T, Arent D, Porro G, Meshek M, Sandor D(eds.) (2012) Renewable Electricity Futures Study. Vol 4 NREL/TP-6A20-52409. National Renewable Energy Laboratory, Golden

  • Kontogianni A, Tourkolias C, Skourtos M (2013) Renewables portfolio, individual preferences and social values towards RES technologies. Energy Policy 55:467–476. doi:10.1016/j.enpol.2012.12.033

    Article  Google Scholar 

  • Krozer Y (2013) Cost and benefit of renewable energy in the European Union. Renew Energy 50:68–73. doi:10.1016/j.renene.2012.06.014

    Article  Google Scholar 

  • Machol B, Rizk S (2013) Economic value of US fossil fuel electricity health impacts. Environ Int 52:75–80. doi:10.1016/j.envint.2012.03.003

    Article  Google Scholar 

  • Manzano-Agugliaro F, Alcayde A, Montoya FG, Zapata-Sierra A, Gil C (2013) Scientific production of renewable energies worldwide: an overview. Renew Sustain Energy Rev 18:134–143. doi:10.1016/j.rser.2012.10.020

    Article  Google Scholar 

  • Masini A, Menichetti E (2013) Investment decisions in the renewable energy sector: an analysis of non-financial drivers. Technol Forecast Soc 80:510–524. doi:10.1016/j.techfore.2012.08.003

    Article  Google Scholar 

  • Munoz JI, de Sanchez la Nieta AA, Contreras J, Bernal-Agustın JL (2009) Optimal investment portfolio in renewable energy: The Spanish case. Energy Policy 37:5273–5284

    Article  Google Scholar 

  • Panepinto D, Viggiano F, Genon G (2014) The potential of biomass supply for energetic utilization in a small Italian region: basilicata. Clean Technol Environ Policy 16:833–845. doi:10.1007/s10098-013-0675-6

    Article  Google Scholar 

  • Planas E, Andreu J, Gil-de-Muro A, Kortabarria I, Martínez de Alegría I (2013) General aspects, hierarchical controls and droop methods in microgrids: a review renewable and sustainable. Energy Reviews 17:147–159. doi:10.1016/j.rser.2012.09.032

    Google Scholar 

  • Ranjan KR, Kaushik SC (2014) Exergy analysis of the active solar distillation systems integrated with solar ponds. Clean Technol Environ Policy 16:791–805. doi:10.1007/s10098-013-0669-4

    Article  CAS  Google Scholar 

  • Reza B, Sadiq R, Hewage K (2013) Emergy-based life cycle assessment (Em-LCA) for sustainability appraisal of infrastructure systems: a case study on paved roads. Clean Technol Environ Policy 16:251–266. doi:10.1007/s10098-013-0615-5

    Article  Google Scholar 

  • Shen YC, Lin G, Li TR, Yuan KP, Benjamin JC (2010) An assessment of exploiting renewable energy sources with concerns of policy and technology. Energy Policy 38:4604–4616

    Article  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: An answer to debatable land based fuels. Bioresource Technol 102:10–16. doi:10.1016/j.biortech.2010.06.032

    Article  CAS  Google Scholar 

  • Strbac G, Ramsay C, Pudjianto D (2008) Microgrids and virtual power plants: concepts to support the integration of distributed energy resources. Proceedings of the Institution of mechanical engineers Part A. J Power Energy 222:731–741. doi:10.1243/09576509jpe556

    Article  Google Scholar 

  • Vanhoucke M, Demeulemeester E, Herroelen W (2001) On maximizing the net present value of a project under renewable resource constraints. Manage Sci 47:1113–1121. doi:10.1287/mnsc.47.8.1113.10226

    Article  Google Scholar 

  • Verma YP, Kumar A (2013) Potential impacts of emission concerned policies on power system operation with renewable energy sources. Int J Electr Power Energy Syst 44:520–529. doi:10.1016/j.ijepes.2012.03.053

    Article  Google Scholar 

  • Vikash R, Atul R (2010) Optimization and sensitivity analysis of a PV/Wind/Diesel hybrid system for a rural community in the pacific. Appl Solar Energy 46:152–156

    Article  Google Scholar 

  • Vinodh S, Jayakrishna K, Kumar V, Dutta R (2014) Development of decision support system for sustainability evaluation: a case study. Clean Technol Environ Policy 16:163–174

    Article  Google Scholar 

  • Zhang H, Li L, Cao J, Zhao M, Wu Q (2011) Comparison of renewable energy policy evolution among the BRICs. Renew Sustain Energy Rev 15:4904–4909

    Article  Google Scholar 

  • Zhou Y, Wanga L, McCalley JD (2011) Designing effective and efficient incentive policies for renewable energy in generation expansion planning. Appl Energy 88:2201–2209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Cucchiella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cucchiella, F., D’Adamo, I. & Gastaldi, M. Financial analysis for investment and policy decisions in the renewable energy sector. Clean Techn Environ Policy 17, 887–904 (2015). https://doi.org/10.1007/s10098-014-0839-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0839-z

Keywords

Navigation