Skip to main content

Advertisement

Log in

SAHPPA: a novel power pinch analysis approach for the design of off-grid hybrid energy systems

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This work proposes a novel approach called stand-alone hybrid system power pinch analysis (SAHPPA), which is particularly applicable for the design of off-grid distributed energy generation systems. The enhanced graphical tool employs new ways of utilising the recently introduced demand composite curve and supply composite curve while honouring and adapting fundamental energy systems engineering concepts. The SAHPPA method is capable of optimising the capacity of both the power generators and energy storage for biomass (i.e. non-intermittent) and solar photovoltaic (i.e. intermittent) energy technologies, which is a contribution to the emerging area of power pinch analysis. In addition, the procedure considers all possible efficiency losses in the overall system encompassing the charging–discharging and current inversion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

DCC:

Demand composite curve

ESCA:

Electric system cascade analysis

O&M:

Operating and maintenance

PPA:

Power pinch analysis

SAHPPA:

Stand-alone hybrid system power pinch analysis

SCC:

Supply composite curve

References

  • Bandyopadhyay S (2011) Design and optimization of isolated energy systems through pinch analysis. Asia-Pac J Chem Eng 6(3):518–526

    Article  CAS  Google Scholar 

  • Bouffard F, Kirschen DS (2008) Centralised and distributed electricity systems. Energy Policy 36(12):4504–4508

    Article  Google Scholar 

  • Department of Energy and Climate Change (UK Government) (2010) Review of the Generation costs and deployment potential of Renewable Electricity Technologies in the UK. Department of Energy and Climate Change (DECC), London

    Google Scholar 

  • El-Halwagi MM (2012) Sustainable design through process integration costs and deployment potential of renewable electricity technologies in the conservation, and profitability enhancement. Elsevier, Amsterdam

    Google Scholar 

  • Foo DCY (2012) Process integration for resource conservation. CRC, Boca Raton

    Google Scholar 

  • Foo DCY (2013) A generalised guideline for process changes for resource conservation networks. Clean Technol Environ Policy 15(1):45–53

    Article  Google Scholar 

  • Foo DCY, Hallale N, Tan R (2007) Pinch analysis approach to short-term scheduling of batch reactors in multi-purpose plants. Int J Chem React Eng 5:A94

    Google Scholar 

  • Foo DCY, Hallele N, Tan RR (2010) Optimize shift scheduling using pinch analysis. Chem Eng 117(7):48–52

    Google Scholar 

  • Haidar A, John P, Shawal M (2011) Optimal configuration assessment of renewable energy in Malaysia. Renewable Energy 36:881–888

    Article  Google Scholar 

  • Ho WS, Hashim H, Hassim MH, Muis ZA, Shamsuddin NLM (2012) Design of distributed energy system through electric system cascade analysis (ESCA). Appl Energy 99:309–315

    Article  CAS  Google Scholar 

  • Ho WS, Hashim H, Lim JS, Klemeš JJ (2013) Combined design and load shifting for distributed energy system. Clean Technol Environ Policy 15(3):433–444

    Article  Google Scholar 

  • Kaldellis J, Vlachos G (2005) Optimum sizing of an autonomous wind-diesel hybrid system for various representative wind-potential cases. Appl Energy 83:113–132

    Article  Google Scholar 

  • Karki R, Billinton R (2001) Reliability/cost implications of PV and wind energy utilization in small isolated power systems. IEEE Trans Energy Convers 16(4):368–373

    Article  Google Scholar 

  • Kemp IC 2007 Pinch analysis and process integration. A user guide on process integration for efficient use of energy. Elsevier, Amsterdam (authors of the first edition Linnhoff B, Townsend DW, Boland D, Hewitt GF, Thomas BEA, Guy AR, Marsland R)

  • Klemeš JJ (ed) 2013. Process integration handbook. Woodhead, Cambridge. doi:10.1533/9780857097255.1.3, ISBN-13:978 0 85709 593 0

  • Klemeš JJ, Varbanov PS (2013) Process intensification and integration: an assessment. Clean Technol Environ Policy 15(3):417–422

    Article  Google Scholar 

  • Klemeš JJ, Friedler F, Bulatov I, Varbanov PS (2010) Sustainability in the process industry: integration and optimization. McGraw-Hill, New York

    Google Scholar 

  • Komor P, Glassmire J (2012) Electricity storage and renewables for island power: a guide for decision makers. International Renewable Energy Agency (IRENA), Bonn

    Google Scholar 

  • Koutroulis E, Kolokotsa D, Potirakis A, Kalaitzakis K (2006) Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Sol Energy 80(3):1072–1088

    Article  Google Scholar 

  • Linnhoff B, Townsend D, Boland D, Hewitt G, Thomas B, Guy A (1982) A user guide on process integration for the efficient use of energy. Institution of Chemical Engineers (IChemE), Rugby

    Google Scholar 

  • Ludwig J, Treitz M, Rentz O, Geldermann J (2009) Production planning by pinch analysis for biomass use in dynamic and seasonal markets. Int J Prod Res 47(8):2079–2090

    Article  Google Scholar 

  • Mohammad Rozali NE, Wan Alwi SR, Abdul Manan Z, Klemeš JJ, Hassan MY (2013a) Process integration of hybrid power systems with energy losses considerations. Energy 55:38–45

    Article  Google Scholar 

  • Mohammad Rozali NE, Wan Alwi SR, Abdul Manan Z, Klemeš JJ, Hassan MY (2013b) Process integration techniques for optimal design of hybrid power systems. Appl Therm Eng. doi:10.1016/j.applthermaleng.2012.12.038

    Google Scholar 

  • Nemet A, Kravanja Z, Klemeš JJ (2012) Integration of solar thermal energy into processes with heat demand. Clean Technol Environ Policy 14(3):453–463

    Article  Google Scholar 

  • Ng DKS, Foo DCY, Tan RR (2007) Targeting for total water network. 1. Waste stream identification. Ind Eng Chem Res 46(26):9107–9113

    Article  CAS  Google Scholar 

  • Ong HC, Mahlia TMI, Masjuki HH (2011) A review on energy scenario and sustainable energy in Malaysia. Renew Sustain Energy Rev 15:639–647

    Article  Google Scholar 

  • Pepermans G, Driesen J, Haeseldonckx D, Belmans R, D’haeseleer W (2005) Distributed generation: definition, benefits and issues. Energy Policy 33(6):787–798

    Article  Google Scholar 

  • Rashid E, Wan Alwi S, Abdul Manan Z (2011) Evaluation of photovoltaic system installation for a Mosque in Universiti Teknologi Malaysia. PERINTIS 1:61–81

    Google Scholar 

  • Smith R (1995) Chemical process design. McGraw-Hill, New York

    Google Scholar 

  • Smith S (2005) Chemical process: design and integration. Wiley, Chichester

    Google Scholar 

  • Smith R, Klemeš J, Tovazhnyansky LL, Kapustenko PA, Uliev LM 2000. Foundations of heat processes integration. NTU KhPI (in Russian), Kharkiv

  • Sreeraj E, Chatterjee K, Bandyopadhyay S (2010) Design of isolated renewable hybrid power systems. Sol Energy 84:1124–1136

    Article  Google Scholar 

  • Steward D, Saur G, Penev M, Ramsden T 2009 Lifecycle cost analysis of hydrogen versus other technologies for electrical energy storage. U.S. National Renewable Energy Laboratory (NREL)

  • Tan R, Foo D (2007) Pinch analysis approach to carbon-constrained energy sector planning. Energy 32(8):1422–1429

    Article  Google Scholar 

  • US Energy Information Administration (EIA) (2010) Updated capital cost estimates for electricity generation plants. EIA, Washington, DC

    Google Scholar 

  • Wan Alwi SR, Rozali NEM, Abdul Manan Z, Klemeš JJ (2012) A process integration targeting method for hybrid power systems. Energy 44(1):6–10

    Article  Google Scholar 

  • Wan Alwi SR, Su TO, Mohammad Rozali NE, Abdul Manan Z, Klemeš JJ (2013) New graphical tools for process changes via load shifting for hybrid power systems based on power pinch analysis. Clean Technol Environ Policy 15(3):459–472

    Article  Google Scholar 

  • Zhou W, Yang H, Fang Z (2008) Battery behavior prediction and battery working states analysis of a hybrid solar-wind power generation system. Renew Energy 33(6):1413–1423

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Seong Khor.

Appendix

Appendix

Appendix A: Cost data

Power generator

Capital cost (RMa/kW)

Fixed O&Mb cost (RM/kW)

Variable O&M cost (RM/kWh)

Biomass (direct-fired)

12,120

316

0.02

Solar PV

16,414.62

122.9

Source DECC (2010), EIA (2010)

Energy storage

Energy-related cost (RM/kWh)

Power-related cost (RM/kWh)

Fixed O&M cost (RM/kW)

Sodium sulphur battery

901.44

735.55

184.67

Source Steward et al. (2009)

System life: 20 years

Fractional interest rate/year: 7 %

  1. aRM stands for the Ringgit Malaysian currency (RM1.00 = EUR as based on November 2013 currency exchange rate)
  2. bO&M: operating and maintenance

Appendix B: Results using ESCA

Time (h:min)

Demand (kWh)

Biomass energy generation (kWh)

Net energy demand (kWh)

Charging of energy (kWh)

Discharging of energy (kWh)

Cumulative energy (kWh)

Adjusted cumulative energy (kWh)

      

0.00

147.76

00:00

25

52.70

27.70

18.70

0.00

18.70

166.45

01:00

25

52.70

27.70

18.70

0.00

37.39

185.15

02:00

25

52.70

27.70

18.70

0.00

56.09

203.85

03:00

25

52.70

27.70

18.70

0.00

74.79

222.55

04:00

25

52.70

27.70

18.70

0.00

93.49

241.24

05:00

25

52.70

27.70

18.70

0.00

112.18

259.94

06:00

25

52.70

27.70

18.70

0.00

130.88

278.64

07:00

25

52.70

27.70

18.70

0.00

149.58

297.34

08:00

75

52.70

−22.30

0.00

−33.04

116.54

264.30

09:00

75

52.70

−22.30

0.00

−33.04

83.50

231.26

10:00

75

52.70

−22.30

0.00

−33.04

50.47

198.22

11:00

75

52.70

−22.30

0.00

−33.04

17.43

165.19

12:00

75

52.70

−22.30

0.00

−33.04

−15.61

132.15

13:00

75

52.70

−22.30

0.00

−33.04

−48.64

99.11

14:00

75

52.70

−22.30

0.00

−33.04

−81.68

66.07

15:00

75

52.70

−22.30

0.00

−33.04

−114.72

33.04

16:00

75

52.70

−22.30

0.00

−33.04

−147.76

0.00

17:00

15

52.70

37.70

25.45

0.00

−122.31

25.45

18:00

15

52.70

37.70

25.45

0.00

−96.86

50.90

19:00

15

52.70

37.70

25.45

0.00

−71.41

76.34

20:00

15

52.70

37.70

25.45

0.00

−45.97

101.79

21:00

30

52.70

22.70

15.32

0.00

−30.64

117.11

22:00

30

52.70

22.70

15.32

0.00

−15.32

132.43

23:00

30

52.70

22.70

15.32

0.00

0.00

147.76

Time (h:min)

Demand (kWh)

Solar radiation (W/m2)

Solar energy generation (kWh)

Net energy demand (kWh)

Charging of energy (kWh)

Discharging of energy (kWh)

Cumulative energy (kWh)

Adjusted cumulative energy (kWh)

       

0.00

185.19

00:00

25

0.00

0.00

−25.00

0.00

−37.04

−37.04

148.15

01:00

25

0.00

0.00

−25.00

0.00

−37.04

−74.07

111.11

02:00

25

0.00

0.00

−25.00

0.00

−37.04

−111.11

74.07

03:00

25

0.00

0.00

−25.00

0.00

−37.04

−148.15

37.04

04:00

25

0.00

0.00

−25.00

0.00

−37.04

−185.19

0.00

05:00

25

0.15

27.97

0.17

0.14

0.00

−185.04

0.14

06:00

25

0.40

74.58

42.13

35.10

0.00

−149.94

35.25

07:00

25

0.63

116.54

79.88

66.57

0.00

−83.37

101.82

08:00

75

0.80

149.17

59.25

49.38

0.00

−33.99

151.19

09:00

75

0.93

172.47

80.23

66.86

0.00

32.86

218.05

10:00

75

1.00

186.46

92.81

77.34

0.00

110.21

295.39

11:00

75

0.90

167.81

76.03

63.36

0.00

173.57

358.75

12:00

75

0.90

167.81

76.03

63.36

0.00

236.93

422.11

13:00

75

0.80

149.17

59.25

49.38

0.00

286.30

471.49

14:00

75

0.60

111.88

25.69

21.41

0.00

307.71

492.89

15:00

75

0.40

74.58

−7.87

0.00

−11.67

296.04

481.23

16:00

75

0.15

27.97

−49.83

0.00

−73.82

222.22

407.41

17:00

15

0.00

0.00

−15.00

0.00

−22.22

200.00

385.19

18:00

15

0.00

0.00

−15.00

0.00

−22.22

177.78

362.96

19:00

15

0.00

0.00

−15.00

0.00

−22.22

155.56

340.74

20:00

15

0.00

0.00

−15.00

0.00

−22.22

133.33

318.52

21:00

30

0.00

0.00

−30.00

0.00

−44.44

88.89

274.07

22:00

30

0.00

0.00

−30.00

0.00

−44.44

44.44

229.63

23:00

30

0.00

0.00

−30.00

0.00

−44.44

0.00

185.19

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, W.S., Khor, C.S., Hashim, H. et al. SAHPPA: a novel power pinch analysis approach for the design of off-grid hybrid energy systems. Clean Techn Environ Policy 16, 957–970 (2014). https://doi.org/10.1007/s10098-013-0700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-013-0700-9

Keywords

Navigation