Skip to main content
Log in

Effectual decolorization and detoxification of triphenylmethane dye malachite green (MG) by Pseudomonas aeruginosa NCIM 2074 and its enzyme system

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Malachite green (MG) a complex and resonance-stabilized triphenylmethane (TPM) textile dye, resistant to transformation, was decolorized using Pseudomonas aeruginosa NCIM 2074. The bacteria decolorized MG (50 mg l−1) completely within 5 h into simple metabolic intermediates in aerobic condition at pH 7 and temperature 35 ± 3°C with 53.23% of the COD reduction. Induction in the activities of MG reductase, laccase, and aminopyrine N-demethylase were observed during MG decolorization suggesting these enzymes were involved in the decolorization process. The products after decolorization were examined by UV–Vis, IR spectroscopy, TLC, and HPLC. MG was enzymatically reduced to leucomalachite green (LMG), and further sequential enzymatic reaction converted LMG into N-demethylated and N-oxidized metabolites, including primary and secondary arylamines. The final product formed in this pathway was benzophenone characterized using GC-mass spectroscopy. The cytotoxicity and phytotoxicity study revealed the transformation of MG into non-toxic product by P. aeruginosa NCIM 2074.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali H (2010) Biodegradation of synthetic dyes—a review. Water Air Soil Pollut 213(1–4):251–273

    Article  CAS  Google Scholar 

  • Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SM (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98(11):2082–2088

    Article  CAS  Google Scholar 

  • Bor-Yann C (2002) Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochem 38(3):437–446

    Article  Google Scholar 

  • Carita R, Marin-Morales MA (2008) Induction of chromosome aberrations in the Allium cepa test system caused by the exposure of seeds to industrial effluents contaminated with azo dyes. Chemosphere 72(5):722–725

    Article  CAS  Google Scholar 

  • Cha CJ, Doerge DR, Cerniglia CE (2001) Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl Environ Microbiol 67(9):4358–4360

    Article  CAS  Google Scholar 

  • Chang JS, Chou C, Lin YC, Lin PJ, Ho JY, Hu TL (2001) Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res 35(12):2841–2850

    Article  CAS  Google Scholar 

  • Chen CY, Kuo JT, Cheng CY, Huang YT, Ho IH, Chung YC (2009) Biological decolorization of dye solution containing malachite green by Pandoraea pulmonicola YC32 using a batch and continuous system. J Hazard Mater 172(2–3):1439–1445

    Article  CAS  Google Scholar 

  • Chen CH, Chang CF, Liu SM (2010) Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions. J Hazard Mater 177(1–3):281–289

    Article  CAS  Google Scholar 

  • Culp SJ, Beland FA (1996) Malachite green: a toxicological review. Int J Toxicol 15(3):219–238

    Article  Google Scholar 

  • Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M (2007) Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour Technol 98(6):1176–1182

    Article  CAS  Google Scholar 

  • Deng DY, Guo J, Zeng GQ, Sun GP (2008) Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int Biodeter Biodegr 62(3):263–269

    Article  CAS  Google Scholar 

  • Dhanve RS, Kalyani DC, Phugare SS, Jadhav JP (2009) Coordinate action of exiguobacterial oxidoreductive enzymes in biodegradation of reactive yellow 84A dye. Biodegradation 20(2):245–255

    Article  CAS  Google Scholar 

  • Du L-N, Wang S, Li G, Wang B, Jia X-M, Zhao Y-H, Chen Y-L (2011) Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition: characteristics, degradation products, enzyme analysis and phytotoxicity. Ecotoxicology 20(2):438–446

    Article  CAS  Google Scholar 

  • Eichlerova I, Homolka L, Nerud F (2006) Evaluation of synthetic dye decolorization capacity in Ischnoderma resinosum. J Ind Microbiol Biotechnol 33(9):759–766

    Article  CAS  Google Scholar 

  • Fernandes C, Lalitha VS, Rao KV (1991) Enhancing effect of malachite green on the development of hepatic pre-neoplastic lesions induced by N-nitrosodiethylamine in rats. Carcinogenesis 12(5):839–845

    Article  CAS  Google Scholar 

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30(7):953–971

    Article  CAS  Google Scholar 

  • Gomare SS, Parshetti GK, Govindwar SP (2009) Biodegradation of malachite green by Brevibacillus laterosporus MTCC 2298. Water Environ Res 81(11):2329–2336

    Article  CAS  Google Scholar 

  • Henderson AL, Schmitt TC, Heinze TM, Cerniglia CE (1997) Reduction of malachite green to leucomalachite green by intestinal bacteria. Appl Environ Microbiol 63(10):4099–4101

    CAS  Google Scholar 

  • Jadhav JP, Govindwar SP (2006) Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23(4):315–323

    Article  CAS  Google Scholar 

  • Jadhav JP, Kalyani DC, Telke AA, Phugare SS, Govindwar SP (2010) Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresour Technol 101(1):165–173

    Article  CAS  Google Scholar 

  • Jang MS, Lee YM, Kim CH, Lee JH, Kang DW, Kim SJ, Lee YC (2005) Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: purification, characterization, gene cloning, and overexpression of a functional protein in Escherichia coli. Appl Environ Microbiol 71(12):7955–7960

    Article  CAS  Google Scholar 

  • Joshi T, Iyengar L, Singh K, Garg S (2008) Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes. Bioresour Technol 99(15):7115–7121

    Article  CAS  Google Scholar 

  • Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99(11):4635–4641

    Article  CAS  Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163(2–3):735–742

    Article  CAS  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407(19):5243–5246

    Article  CAS  Google Scholar 

  • Lin SF, Yu P, Lin YM (2004) Study on decolorization of malachite green by a Pseudomonas aeruginosa. J Fujian Norm Univ (Nat Sci Ed) 20:72–75

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Mali PL, Mahajan MM, Patil DP, Kulkarni MV (2000) Biodecolorization of members of triphenylmethanes and azo groups of dyes. J Sci Ind Res 59:221–224

    CAS  Google Scholar 

  • Moawad H, El-Rahim WM, Khalafallah M (2003) Evaluation of biotoxicity of textile dyes using two bioassays. J Basic Microbiol 43(3):218–229

    Article  CAS  Google Scholar 

  • Moosvi S, Keharia H, Madamwar D (2005) Decolourization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1. World J Microbiol Biotechnol 21(5):667–672

    Article  CAS  Google Scholar 

  • Moosvi S, Kher X, Madamwar D (2007) Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes Pigment 74(3):723–729

    Article  CAS  Google Scholar 

  • Murugesan K, Yang IH, Kim YM, Jeon JR, Chang YS (2009) Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. Appl Microbiol Biotechnol 82(2):341–350

    Article  CAS  Google Scholar 

  • Papinutti VL, Forchiassin F (2004) Modification of malachite green by Fomes sclerodermeus and reduction of toxicity to Phanerochaete chrysosporium. FEMS Microbiol Lett 231(2):205–209

    Article  CAS  Google Scholar 

  • Parshetti GK, Kalme SD, Saratale GD, Govindwar SP (2006) Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chim Slov 53:492–498

    CAS  Google Scholar 

  • Parshetti GK, Telke AA, Kalyani DC, Govindwar SP (2010) Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. J Hazard Mater 176(1–3):503–509

    Article  CAS  Google Scholar 

  • Patil PS, Phugare SS, Jadhav SB, Jadhav JP (2010) Communal action of microbial cultures for Red HE3B degradation. J Hazard Mater 181(1–3):263–270

    Article  CAS  Google Scholar 

  • Radic S, Stipanicev D, Vujcic V, Rajcic MM, Sirac S, Pevalek-Kozlina B (2010) The evaluation of surface and wastewater genotoxicity using the Allium cepa test. Sci Total Environ 408(5):1228–1233

    Article  CAS  Google Scholar 

  • Rajaguru P, Kalaiselvi K, Palanivel M, Subburam V (2000) Biodegradation of azo dyes in a sequential anaerobic-aerobic system. Appl Microbiol Biotechnol 54(2):268–273

    Article  CAS  Google Scholar 

  • Rao KV (1995) Inhibition of DNA synthesis in primary rat hepatocyte cultures by malachite green: a new liver tumor promoter. Toxicol Lett 81(2–3):107–113

    Article  CAS  Google Scholar 

  • Sani RK, Banerjee UC (1999) Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzym Microb Technol 24(7):433–437

    Article  CAS  Google Scholar 

  • Singh P, Sanghi R, Pandey A, Iyengar L (2007) Decolorization and partial degradation of monoazo dyes in sequential fixed-film anaerobic batch reactor (SFABR). Bioresour Technol 98(10):2053–2056

    Article  CAS  Google Scholar 

  • Telke A, Kalyani D, Jadhav J, Govindwar S (2008) Kinetics and mechanism of reactive Red 141 degradation by a bacterial isolate Rhizobium radiobacter MTCC 8161. Acta Chim Slov 55(2):320–329

    CAS  Google Scholar 

  • Tsai WT, Chen HR (2010) Removal of malachite green from aqueous solution using low-cost chlorella-based biomass. J Hazard Mater 175(1–3):844–849

    Article  CAS  Google Scholar 

  • Wang H, Zheng XW, Su JQ, Tian Y, Xiong XJ, Zheng TL (2009) Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J Hazard Mater 171(1–3):654–659

    Article  CAS  Google Scholar 

  • Youssef AS, El-Sherif MF, El-Assar SA (2008) Studies on the decolorization of malachite green by the local isolate Acremonium kiliense. Biotechnology 7:213–223

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the 2011 KU Brain Pool program of Konkuk University. This study was supported by a grant (PJ007449201006) from Biogreen 21 Program, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J.-K. Lee or J. P. Jadhav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyani, D.C., Telke, A.A., Surwase, S.N. et al. Effectual decolorization and detoxification of triphenylmethane dye malachite green (MG) by Pseudomonas aeruginosa NCIM 2074 and its enzyme system. Clean Techn Environ Policy 14, 989–1001 (2012). https://doi.org/10.1007/s10098-012-0473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-012-0473-6

Keywords

Navigation