Skip to main content
Log in

Evaluation of the MTS™ aztreonam-avibactam strip (Liofilchem) on New Delhi metallo-β-lactamase-producing Enterobacterales

  • Brief Report
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The combination of ceftazidime-avibactam (CAZ-AVI) and aztreonam (ATM) is used to treat MBL-producing Enterobacterales-related infections. The new combination aztreonam-avibactam (AZA) is currently in development. We compared results obtained with the new MIC test strip (MTS) AZA (Liofilchem) with broth microdilution method (BMD) on 41 MBL-producing Enterobacterales from 41 clinical samples. The MTS AZA was also compared to combination testing method using CAZ-AVI and ATM strips. Compared to BMD, categorical agreement (CA) was 100%. Compared with combination testing method, CA was 97.6%. The MTS AZA can be used to determine MICs levels of AZA or CAZ-AVI/ATM combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA et al (2018) Carbapenemase-producing organisms: a global scourge. Clin Infect Dis Off Publ Infect Dis Soc Am 3(66):1290–1297. https://doi.org/10.1093/cid/cix893

    Article  CAS  Google Scholar 

  2. Logan LK, Weinstein RA (2017) The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 15(215):S28-36. https://doi.org/10.1093/infdis/jiw282

    Article  CAS  Google Scholar 

  3. Poirel L, Ortiz de la Rosa JM, Sakaoglu Z, Kusaksizoglu A, Sadek M, Nordmann P (2022) NDM-35-producing ST167 Escherichia coli highly resistant to β-lactams including cefiderocol. Antimicrob Agents Chemother. 16(66):0031122. https://doi.org/10.1128/aac.00311-22

    Article  CAS  Google Scholar 

  4. Larcher R, Laffont-Lozes P, Roger C, Doncesco R, Groul-Viaud C, Martin A et al (2022) Last resort beta-lactam antibiotics for treatment of New-Delhi metallo-beta-lactamase producing Enterobacterales and other difficult-to-treat resistance in gram-negative bacteria: a real-life study. Front Cell Infect Microbiol 12:1048633. https://doi.org/10.3389/fcimb.2022.1048633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Falcone M, Daikos GL, Tiseo G, Bassoulis D, Giordano C, Galfo V et al (2021) Efficacy of Ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase-producing Enterobacterales. Clin Infect Dis Off Publ Infect Dis Soc Am 1(72):1871–1878. https://doi.org/10.1093/cid/ciaa586

    Article  CAS  Google Scholar 

  6. Mauri C, Maraolo AE, Di Bella S, Luzzaro F, Principe L (2021) The revival of aztreonam in combination with avibactam against metallo-β-lactamase-producing gram-negatives: a systematic review of in vitro studies and clinical cases. Antibiot Basel Switz 20(10):1012. https://doi.org/10.3390/antibiotics10081012

    Article  CAS  Google Scholar 

  7. Wenzler E, Deraedt MF, Harrington AT, Danizger LH (2017) Synergistic activity of ceftazidime-avibactam and aztreonam against serine and metallo-β-lactamase-producing gram-negative pathogens. Diagn Microbiol Infect Dis 88:352–354. https://doi.org/10.1016/j.diagmicrobio.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  8. Emeraud C, Escaut L, Boucly A, Fortineau N, Bonnin RA, Naas T et al (2019) Aztreonam plus clavulanate, tazobactam, or avibactam for treatment of infections caused by metallo-β-lactamase-producing gram-negative bacteria. Antimicrob Agents Chemother 63:e00010-19. https://doi.org/10.1128/AAC.00010-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Merad Y, Conrad A, Brosset S, Schmidt A, Hanriat C, Lustig S et al (2023) Case report: continuous infusions of ceftazidime-avibactam and aztreonam in combination through elastomeric infusors for 12 weeks for the treatment of bone and joint infections due to metallo-β-lactamase producing Enterobacterales. Front Med 10:1224922. https://doi.org/10.3389/fmed.2023.1224922

    Article  Google Scholar 

  10. Singh R, Kim A, Tanudra MA, Harris JJ, McLaughlin RE, Patey S et al (2015) Pharmacokinetics/pharmacodynamics of a β-lactam and β-lactamase inhibitor combination: a novel approach for aztreonam/avibactam. J Antimicrob Chemother 70:2618–2626. https://doi.org/10.1093/jac/dkv132

    Article  CAS  PubMed  Google Scholar 

  11. Sadek M, Juhas M, Poirel L, Nordmann P (2020) Genetic features leading to reduced susceptibility to aztreonam-avibactam among metallo-β-lactamase-producing Escherichia coli isolates. Antimicrob Agents Chemother 17(64):e01659-e1720. https://doi.org/10.1128/AAC.01659-20

    Article  Google Scholar 

  12. Periasamy H, Joshi P, Palwe S, Shrivastava R, Bhagwat S, Patel M (2020) High prevalence of Escherichia coli clinical isolates in India harbouring four amino acid inserts in PBP3 adversely impacting activity of aztreonam/avibactam. J Antimicrob Chemother 1(75):1650–1651. https://doi.org/10.1093/jac/dkaa021

    Article  CAS  Google Scholar 

  13. Alm RA, Johnstone MR, Lahiri SD (2015) Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother 70:1420–1428. https://doi.org/10.1093/jac/dku568

    Article  CAS  PubMed  Google Scholar 

  14. Karlowsky JA, Kazmierczak KM, de Jonge BLM, Hackel MA, Sahm DF, Bradford PA (2017) In vitro activity of aztreonam-avibactam against Enterobacteriaceae and Pseudomonas aeruginosa Isolated by clinical laboratories in 40 countries from 2012 to 2015. Antimicrob Agents Chemother 61:e00472-e517. https://doi.org/10.1128/AAC.00472-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wise MG, Karlowsky JA, Mohamed N, Kamat S, Sahm DF (2023) In vitro activity of aztreonam-avibactam against Enterobacterales isolates collected in Latin America, Africa/Middle East, Asia, and Eurasia for the ATLAS Global Surveillance Program in 2019–2021. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 42:1135–1143. https://doi.org/10.1007/s10096-023-04645-2

    Article  CAS  Google Scholar 

  16. Khan A, Erickson SG, Pettaway C, Arias CA, Miller WR, Bhatti MM (2021) Evaluation of susceptibility testing methods for aztreonam and ceftazidime-avibactam combination therapy on extensively drug-resistant gram-negative organisms. Antimicrob Agents Chemother 18(65):e0084621. https://doi.org/10.1128/AAC.00846-21

    Article  Google Scholar 

  17. Jayol A, Nordmann P, Poirel L, Dubois V (2018) Ceftazidime/avibactam alone or in combination with aztreonam against colistin-resistant and carbapenemase-producing Klebsiella pneumoniae. J Antimicrob Chemother 1(73):542–544. https://doi.org/10.1093/jac/dkx393

    Article  CAS  Google Scholar 

  18. Viguier C, Bouvier M, Sadek M, Kerbol A, Poirel L, Nordmann P (2023) Rapid Aztreonam/Avibactam NP test for detection of aztreonam/avibactam susceptibility/resistance in Enterobacterales. J Clin Microbiol 24(61):e0058823. https://doi.org/10.1128/jcm.00588-23

    Article  CAS  Google Scholar 

  19. Liofilchem. Technical Sheet MTS Aztreonam-avibactam 0.016/4–256/4. Rev.0 / 05.10.2022. https://www.liofilchem.com/

  20. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 14.0, valid from 2024–01–01. https://www.eucast.org/clinical_breakpoints

  21. Jousset AB, Bouabdallah L, Birer A, Rosinski-Chupin I, Mariet J-F, Oueslati S et al (2023) Population analysis of Escherichia coli sequence type 361 and reduced cefiderocol susceptibility. France Emerg Infect Dis 29:1877–1881. https://doi.org/10.3201/eid2909.230390

    Article  PubMed  Google Scholar 

  22. Verschelden G, Noeparast M, Stoefs A, Van Honacker E, Vandoorslaer K, Vandervore L et al (2023) Aztreonam-avibactam synergy, a validation and comparison of diagnostic tools. Front Microbiol 14:1322180. https://doi.org/10.3389/fmicb.2023.1322180

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deschamps M, Dauwalder O, Dortet L (2023) Comparison of ETEST® superposition method and the MTSTM Aztreonam-avibactam strip with the reference method for aztreonam/avibactam susceptibility testing. J Antimicrob Chemother 29:407. https://doi.org/10.1093/jac/dkad407

    Article  Google Scholar 

Download references

Acknowledgements

We thank Omar Sultan and Thomas Yung for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Emilie Cardot Martin; methodology: Emilie Cardot Martin; formal analysis and investigation: Emilie Cardot Martin, Marine Gougeon, Laurent Dortet, Lucie Limousin, Eric Farfour; writing—original draft preparation: Emilie Cardot Martin; writing—review and editing: Marie-Alice Colombier, Annabelle Pourbaix, Eric Farfour, Laurent Dortet, Lucie Limousin, Marc Vasse; supervision: Marc Vasse.

Corresponding author

Correspondence to Cardot Martin Emilie.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emilie, C.M., Alice, C.M., Marine, G. et al. Evaluation of the MTS™ aztreonam-avibactam strip (Liofilchem) on New Delhi metallo-β-lactamase-producing Enterobacterales. Eur J Clin Microbiol Infect Dis 43, 777–784 (2024). https://doi.org/10.1007/s10096-024-04766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-024-04766-2

Keywords

Navigation